

SIMPROCESS
®

TimeServer

SIMPROCESS TimeServer

i

Table of Contents

1 Introduction... 1

2 TimeServer Concept of Operations .. 1

2.1 Participants are Players ... 1

2.2 Players are in Groups .. 1

2.3 Time is in Units... 1

2.4 Time Advances Equally for All Players ... 1

2.5 Players Make the Rules... 2

3 Installed TimeServer Components.. 2

3.1 The timeserver.jar file .. 2

3.2 The timesrvconfig.xml file .. 2

3.3 The StartTimeServer scripts.. 2

3.4 The StartMonitor scripts ... 3

3.5 The doc directory .. 3

4 Operation of a TimeServer.. 3

4.1 Configuration .. 3

4.1.1 Supported Configuration Properties ... 3

4.1.2 Setting Properties via Command Line .. 4

4.2 Using the TimeServer Application ... 5

4.2.1 Running the TimeServer Application ... 5

4.2.2 Using the Menus ... 5

5 Operation of a TimeServerMonitor .. 6

5.1 Starting TimeServerMonitor... 6

5.2 TimeServerMonitor Menus... 6

5.2.1 Monitor ... 6

5.2.2 Monitor Commands .. 7

5.3 TimeServerMonitor Message Window... 7

6 Software Interface to TimeServer ... 8

6.1 TimeServer API .. 8

6.1.1 TimeUnits ... 8

Important Note concerning NANOSECOND values ... 8

6.1.2 MessageType .. 9

6.1.3 CommData .. 9

6.2 Communication Protocol .. 9

6.2.1 First Contact.. 9

6.2.2 READY…or Not .. 11

6.2.3 Protocol Message Sequences .. 12

6.3 Developing a TimeServer Interface using JNI.. 13

7 What Messages Mean to Players .. 13

7.1 Basic TimeServer Philosophy... 14

7.2 Player Messages.. 14

7.2.1 Error Messages from Players .. 14

7.2.2 PLAYER_TERMINATION ... 14

7.2.3 REQUEST_TIME_ADVANCE ... 14

7.2.4 PLAYER_COMPLETION ... 15

SIMPROCESS TimeServer

ii

7.2.5 END_RUN.. 15

7.2.6 GET_CURRENT_TIME .. 16

7.3 TimeServer Messages ... 16

7.3.1 GROUP_RESET_TIME... 16

7.3.2 GROUP_REINITIALIZE... 16

7.3.3 SERVER_STOPPING .. 16

1

1 Introduction
SIMPROCESS

®
 models now have the ability to let an outside agent manage the

advancement of simulation time. That agent is the SIMPROCESS TimeServer. This

document describes the TimeServer application and its operational concept, the included

TimeServerMonitor application, and the technical information needed by developers to

help applications other than SIMPROCESS take advantage of the TimeServer.

2 TimeServer Concept of Operations
The principal idea behind the TimeServer application is to provide an outside agent that

can manage simulation time for multiple participants. Only a few basic concepts need be

involved in order to handle its responsibilities, thereby providing maximum flexibility

and imposing minimal constraints on those using it. Its basic concepts are listed in the

following paragraphs.

2.1 Participants are Players

Participants sharing time management facilities are referred to as players. Each will

represent a different SIMPROCESS model, or they may represent other applications able

to take advantage of the TimeServer’s offerings.

2.2 Players are in Groups

To prevent the need for multiple instances of the TimeServer application, it supports

groups. Each group will have a unique name among those handled by a single instance

of the TimeServer application. Each group will manage its own time independently of all

others. They are all under the auspices of a single running instance of the TimeServer

application, so that starting or stopping it therefore applies to all of them.

2.3 Time is in Units

Models in SIMPROCESS may have simulation time periods in units of measure ranging

from nanoseconds to years. Which one any given model or other player uses isn’t

relevant to the TimeServer. What it does need, however, is to know what unit of measure

each player uses so that it can communicate with a proper understanding. The

TimeServer will maintain its current time as a number of nanoseconds from its starting

value of 0.0. Each player’s time advancement request will be in the player’s own unit of

measure, which will be translated into nanoseconds when received. When it’s time to

notify all players of a new time advancement authorization, each will receive the new

time in its own time units.

2.4 Time Advances Equally for All Players

At startup, a group will expect a previously known number of players (configuration

details are described later). Any player that has joined the group may begin submitting

requests for time advancement, but none will be advanced until all members of the group

have joined. Once the expected number of players has joined, time advancement will

begin only when requests have arrived from all of them. At that point, the smallest

requested advance (in the server’s own units of nanoseconds) will be selected and all

2

players will receive notification in their respective time units. After initially joining,

some players may drop out or indicate that they have finished their participation. This

has the effect of reducing the number of requests that must be on hand before any time

advancement notifications can be sent.

2.5 Players Make the Rules

The TimeServer can do nothing to enforce rules concerning time advancement requests

except to maintain a current time, reject requests it determines to be invalid, and send out

advancement notices only when all of a group’s players have submitted requests. But

this has the advantage of imposing no unreasonable constraints on how players behave.

An individual player can decide whether it’s reasonable to drop out when notified that

some other player has done so. If the TimeServer’s menus are used to reset the group’s

time back to the beginning, each player must determine whether it can continue or must

drop out. What a player does between sending and receiving messages is unknown to the

TimeServer, which is only interested in managing time for the group. In short, it’s the

players who make the rules and are in charge.

3 Installed TimeServer Components
The components of the SIMPROCESS TimeServer application are included with

SIMPROCESS in its timeserver directory. The individual components are described in

the following paragraphs.

3.1 The timeserver.jar file

This is the single most critical component, as it contains the Java code which is the heart

of the TimeServer. Though it may be copied to other locations to run a TimeServer or

TimeServerMonitor application, this file must remain in the timeserver directory since

that’s where SIMPROCESS will expect to find it when running any simulation that uses a

TimeServer.

3.2 The timesrvconfig.xml file

This file contains some configuration properties required by the TimeServer. It is

required to be in the same directory with the timeserver.jar file unless its location and

name have been changed using command line options discussed later. If a TimeServer is

to be operated from a different location (or on another system), make sure this file is also

copied there.

3.3 The StartTimeServer scripts

SIMPROCESS is available for multiple platforms, so files are provided for Windows

(with the .bat extension) and other Unix-like platforms (with the .sh extension) that can

be used to start the TimeServer. Each will launch the TimeServer using the installed Java

Runtime Environment (JRE) in the jre directory of SIMPROCESS, and each will launch

the program in the background. If it’s desirable to run the TimeServer from some other

location, or from another system that includes an appropriate version of Java, these files

can be copied and modified as needed.

3

3.4 The StartMonitor scripts

Files are also provided for starting the TimeServerMonitor on various platforms. Each

script will launch the TimeServerMonitor using the installed JRE and each will launch

the program in the background. These files can also be copied and modified as needed to

run a monitor from another location or on another system.

3.5 The doc directory

This directory contains documentation for portions of the Java source code used by the

TimeServer and TimeServerMonitor programs. Its contents are in the popular “Javadoc”

format familiar to Java developers. Look inside this directory for the index.html file and

open it in a web browser. The Java classes documented here will be discussed further in

the portion of this document addressing technical details.

4 Operation of a TimeServer
The SIMPROCESS TimeServer is designed to be as simple as possible to configure and

operate. When run, it displays a single window that displays occasional messages about

things that are occurring (enabling debugging will produce much more text). Its menus

will be described in the following paragraphs, along with the properties found in the

timesrvconfig.xml file and other options for overriding some properties.

4.1 Configuration

The timesrvconfig.xml file will typically contain all the configuration properties for a

TimeServer, though any property can be overridden at the command line. Refer to the

sample file provided at installation time to see the format this file must take. It must be

an XML file; its root element name must be properties; it may contain a single optional

comment element; and each of the properties to be used by the TimeServer must appear

in an element named entry having an attribute named key, the value of which provides the

name of the configuration property for which a value is being given. For example:

<entry key="timesrv.timeout">30</entry>

This entry element specifies a value of 30 for the property named timesrv.timeout.

4.1.1 Supported Configuration Properties

• timesrv.groups – This is the only property that is absolutely required. It must

provide a unique name for each simulation group the TimeServer is expected to

support during any session, and it must identify the number of players expected to

join the group. It must, at a minimum, name one group and the group must have

at least one participant (e.g., SimGroupA.1). (Group names are case sensitive.)

This allows a TimeServer to support any number of simultaneous simulation

groups, each operating independently of others. By providing a count of the

expected number of participants, each group is able to determine when all have

connected so that it can begin evaluating requests for time advancement.

4

• timesrv.debug – This optional property should have a value of “true” or “false”.

When “true”, additional debugging information will appear in the TimeServer’s

display window.

• timesrv.timeout – This optional property specifies the length of time in seconds

that will be used by sockets created by the TimeServer when initial connections

are received. The default is 30 seconds. It is recommended that this property

always be used. When a non-zero value is used, new connections will be

discarded if no communication occurs within this amount of time, thereby

avoiding dead connections and unnecessary network traffic.

• timesrv.logfile – This optional property specifies a file name (without extension)

to be used for redirection of standard output and error streams when a TimeServer

launches. When this property is not present, default names of TimeServer.log and

TimeServer.err will be used. If a value is provided, it will have the extension

“.log” appended for standard output redirection and “.err” for standard error.

• timesrv.port – This optional property specifies the network port on which socket

communications with the TimeServer will take place. The default port of 26100

was selected from among those not reserved by the Internet Assigned Numbers

Authority (IANA). A complete list of “well known” ports, as well as those

reserved for specific uses or otherwise registered, can be found on the Internet by

visiting http://www.iana.org/assignments/port-numbers. The port selected for use

by a TimeServer must be one between 1024 and 65535, inclusive.

• timesrv.config – This property cannot be used in the configuration file. Instead, it

must be specified on the command line (learn how in the next section). When

provided, its value will be used to locate a configuration file that should be used

instead of the default timesrvconfig.xml file. The value provided for this property

must be the complete file name (it must still be in the format described above,

whether or not its name uses the .xml extension), and may include path

information if desired.

4.1.2 Setting Properties via Command Line

All configuration properties that are supported by the TimeServer can also be provided

via the command line. When this method is used to provide a property value, it will

override any entry for that property in the configuration file. A property value can be

provided in this way even if no entry appears in the configuration file.

The command line mechanism for providing a property value is that used by Java. For

each property value to be set, a string similar to the following must be added to the

command line (such as the one that appears in the script files described earlier):

-Dtimesrv.port=26100

In this example, a value is being provided for the network port to be used by the

TimeServer. The “-D” portion indicates to Java that a property name and value follow.

Any property name supported by the TimeServer can be used, followed (without any

intervening spaces) by “=” and an appropriate value. When the value contains spaces (as

is possible if a path is provided for the timesrv.config or timesrv.logfile properties), it

5

should be quoted to ensure it’s correctly interpreted. Important Note: This switch,

when used, must appear prior to the “-classpath” entry found on the command line in the

provided script files.

Any number of configuration properties can be set in this way, subject to any operating

system restrictions on the total length of the command line used to invoke the TimeServer

program. Though all properties can be provided in this way, the TimeServer program

still requires a properly formed configuration file. If it is unable to locate the default

timesrvconfig.xml file or one specified in the “timesrv.config” property, the TimeServer

will report an error and terminate.

4.2 Using the TimeServer Application

4.2.1 Running the TimeServer Application

The TimeServer application can be started by using one of the StartTimeServer script

files provided at installation, or it can be run from another location or even on another

system. To run it from another location or system, copy the timeserver.jar and

timesrvconfig.xml files to the location from which it will run. You can also copy one of

the provided script files and modify it as appropriate to indicate the location of the “java”

or “javaw” commands it needs and to include any optional configuration parameters.

Important: The TimeServer application uses language features introduced in Java 5.0

(also sometimes called Java 1.5), so this is the minimum version required to run the

application.

4.2.2 Using the Menus

When launched, the TimeServer application will read its configuration file and, if no

errors occur, display its window indicating the names of each group and their player

counts obtained from configuration properties. It will then indicate that it is accepting

connections on the designated port. The TimeServer’s window provides two menus,

described below.

4.2.2.1 File Menu

The File menu contains the following menu items.

• Save – When this item is selected, a file browser will appear with a default file
name of TimeServer.txt entered. The location and/or name can be changed as

desired. Clicking “Save” will write the text from the window to the specified file.

If the file already exists, it will only be overwritten after requesting permission.

• Clear – When this item is selected, the contents of the TimeServer’s display
window will be cleared.

• Exit – When this item is selected, the TimeServer program will terminate. If
there are any existing connections, they will be shut down without warning.

Clicking the window’s close decoration will act as if this menu item were

selected.

4.2.2.2 Reset Menu

The Reset menu includes the following menu items.

6

• Reinitialize Group – This item is designed to be used when multiple
groups are in operation and one needs to reinitialize as though the TimeServer

program had just been started. Existing participants will have messages sent to

inform them that the server is reinitializing and then their connections will be

closed. Once this is done, the group will once again wait for the required number

of participants to join before honoring requests for time advancement.

• Reset Group Time – This item will reset the time for the specified group to
zero. All currently connected participants will be sent messages informing them

of this change.

5 Operation of a TimeServerMonitor
The TimeServerMonitor program is provided as a convenience and allows monitoring

much of the information exchanged between a TimeServer and applications participating

in groups (players).

5.1 Starting TimeServerMonitor

Script files are provided for running TimeServerMonitor using the JRE installed with

SIMPROCESS. No configuration is required, and the program can run on any system

that has the ability to communicate with the desired TimeServer and an appropriate Java

version. Copy timeserver.jar and an appropriate script file, changing the latter as needed.

5.2 TimeServerMonitor Menus

Like TimeServer, the TimeServerMonitor program displays a window where text will

appear to provide its information. This text can be cleared or saved via the File menu,
as described above for TimeServer. Its other menus are described below.

5.2.1 Monitor

This menu contains two items, only one of which will be enabled at any time.

• Monitor Group… – This menu item will be enabled when no group is being
monitored. When selected, it will prompt for the information required to connect

to a TimeServer, including a host name or Internet Protocol (IP) address, port, the

name of the group to monitor, and the time unit to be used for its displays of time

related messages. When a successful connection is established, this menu item

will become disabled. The TimeServerMonitor program can only monitor one

group at any time. Multiple instances can be run if multiple groups need to be

monitored.

• Disconnect Monitor – This item will be enabled only when a monitor
connection has been established. Selecting it will cause that connection to be

terminated, after which this item will be disabled and the Monitor Group…
item will be enabled. In the event that the TimeServer sends a message of type

RESET_TIME (as described later), the monitor’s connection will be dropped and

this item automatically selected.

7

5.2.2 Monitor Commands

This menu will only be enabled when an active monitor connection has been established.

It contains the following:

• Get Current TimeServer Time… - When selected, a message will be sent
to the TimeServer requesting the current time for the group being monitored. A

reply will be expected indicating that the request came from “Monitor” and

providing the group’s current time. It will be displayed as a number representing

the time units used when the monitor connected.

5.3 TimeServerMonitor Message Window

Communication between “players” and the TimeServer will take the form of messages

with specific “messageType” values described later in this document. (See that section

for more detail on their meanings and the contents of each message.) In general,

TimeServerMonitor will receive information about the most common information

exchanges that occur. Some examples are:

• IDENT – Each player making a connection to a TimeServer will initially be sent a

SEND_IDENT message. (This is also true for a monitor; see the discussion of
protocols later in this document.) The required response is a message of type

IDENT that also includes the name of the group a player wishes to join, the name
by which it will be known (unique within the group; all monitors use the name

“Monitor”), and the time units it will use. If a player’s IDENT message is invalid,

no monitors will be advised. A successful player IDENT message will be
forwarded to all monitors, and a message will appear in the window indicating the

essential details.

• REQUEST_TIME_ADVANCE – Each player in a group must request permission
to advance to the desired time. Requests will be in messages of this type and will

be forwarded to all monitors. TimeServerMonitor will display the name of the

player and the time, in the player’s time units, requested.

• END_RUN – A player can send this message indicating that it will not proceed

until the TimeServer sends a GROUP_RESET_TIME message. This is analogous
to a SIMPROCESS model completing a replication when the Reset System

setting is used. Each such message will be passed on to all monitors.

• ADVANCE_TO_TIME – When requests have been received from all players in a
group, the shortest time will be selected and a message of this type sent to all

players and monitors. TimeServerMonitor will display the time in its own units

(the one specified when establishing the connection to a group).

• CURRENT_TIME – Any player or monitor can ask the TimeServer for its group’s

current time by sending a GET_CURRENT_TIME message, and the reply will be
this type. If requested by a player, the group will forward the reply to all

monitors. When received by TimeServerMonitor, the name and time units of the

requester will be displayed.

• PLAYER_COMPLETION – When a monitor wishes to stop, it sends a message of
this type to the TimeServer and will no longer receive other messages. When a

player wishes to indicate that it has completed its operations, it will send this

message and all other players and monitors in the group will be notified. When

8

TimeServerMonitor receives a message of this type, it will display the name and

time of the sender.

• PLAYER_TERMINATION – When a player wishes to quit, or encounters an error
of some kind, its group will see a message of this type. It will be forwarded to all

other players and monitors. TimeServerMonitor will display the name indicated

in the message.

• GROUP_REINITIALIZE – When Reinitialize Group is selected by the
operator of TimeServer, a message of this type is sent to all the group’s players

and monitors. TimeServerMonitor will display a message when it receives such a

message and break its connection to the TimeServer. The menu states will then

be as if the Disconnect Monitor menu item had been selected, so that
monitoring of the same or another group may begin if desired.

• GROUP_RESET_TIME – When Reset Group Time is selected by the
operator of TimeServer, monitors will also be notified. TimeServerMonitor will

display a message indicating that it has received such a message. The TimeServer

will also send this message once it has received END_RUN messages from all
players in a group.

6 Software Interface to TimeServer
This section contains information for software developers that will help them to enable

their own programs to communicate with a TimeServer and act as players. It includes

discussion of the Java classes that serve as the Application Programming Interface (API).

It also addresses the protocol for communication between the server and a player (that is,

the specific sequence of messages that must occur when establishing contact and to take

other actions that will be recognized by the TimeServer). Because the TimeServer is

written entirely in Java, all of this information is presented in terms of that language. The

underlying mechanism for communicating – sockets – is not limited to Java, however,

and code in C or C++ that takes advantage of the Java Native Interface (JNI) and can

readily be devised to communicate with the TimeServer application.

6.1 TimeServer API

All discussion in this section of using the API documented in the Javadoc files installed

in the doc directory assumes that the player is developed in Java.

6.1.1 TimeUnits

TimeUnits is an enumeration which provides a set of constants representing all of the
time units supported by the TimeServer application. Each message needing to include

time units must use one of these constants in its timeUnits field (see the CommData
class below).

TimeUnits also provides static convenience methods for translating time values to or

from nanoseconds, and for obtaining any of the constants from a String.

Important Note concerning NANOSECOND values: The smallest unit of time

supported by the TimeServer application is nanoseconds, and all its internal operations

9

use this unit of measure. It does not allow fractional nanoseconds. All nanosecond

values will be rounded up using the java.lang.Math.ceil(double) method. See comments

in the Javadocs for any further information.

6.1.2 MessageType

MessageType is an enumeration which provides a set of constants for use in the

messageType field of CommData objects exchanged between a TimeServer and
players. Some of the values there will never be placed into a message by the TimeServer

application, especially if their documentation indicates that they are to be used internally.

6.1.3 CommData

The CommData class is perhaps the single most important one in the TimeServer API.
Every message exchanged between the TimeServer application and players will be a

serialized instance of this class. Every instance requires a value in its messageType
field that will be understood at the other end (the protocol section will provide further

information in this area). When a connection is received from a potential player, the

TimeServer will invoke a handler that will immediately send a message in which this

field contains a value of MessageType.SEND_IDENT. If the first response received
by a player after connecting is not an instance of this class, or if it does not contain

MessageType.SEND_IDENT in the messageType field, the player can be confident
that the sender isn’t a TimeServer. In reply, a player is expected to send an instance of

CommData with a messageType of MessageType.IDENT. The groupName field

will indicate which group the player wants to join. The playerName field will provide
a name by which the player will be known (when seen in a monitor, for instance) within

the group. And the timeUnits field will state the player’s choice of time units using

one of the values from TimeUnits as described above. The TimeServer application
can be confident that the connection comes from a potential player when it receives this

recognizable reply.

All of the member variables in this class are public and can be set directly in code. The

only methods provided are a single constructor and some static convenience methods

which simplify creation of the most commonly exchanged types of messages, each taking

parameters that will populate the fields required for that particular message type.

6.2 Communication Protocol

In order for any two programs to communicate, there must be an understood and agreed

upon “language” for communicating between them. When one side sends a message, it

should know what kinds of responses the other might send in reply. This constitutes the

protocol to which all participants must adhere. This section describes the protocol for

communications between the TimeServer application and any player (or monitor).

6.2.1 First Contact

When the TimeServer application starts and successfully completes its initialization, it

listens for connections on the port indicated in its configuration. Any application can

10

connect to that port and the TimeServer will immediately invoke its handler to initiate

communication according to these protocols.

The handler’s first actions will be to open input and output streams on the newly created

socket, enabling it to read from and write to it. If it is unable to do so, it will terminate

the connection and take no further action. The following Java code demonstrates how

these streams are initially created:

// The output stream must be opened first to
// prevent blocking on the input stream's constructor
oos = new ObjectOutputStream(socket.getOutputStream());
ois = new ObjectInputStream(socket.getInputStream());

As the comment in this sample indicates, the constructor of ObjectInputStream will

block if there’s not an open ObjectOutputStream on the socket (both of these

classes are in the package java.io). A client application (whether a player or monitor)
needs to execute actions like those above as soon as possible after successfully opening a

socket to the TimeServer.

The handler’s next step is to send an instance of CommData with a messageType field

containing a value of MessageType.SEND_IDENT. For this reason, the player should
very quickly execute code that listens for a message of this type. An example follows.

CommData data = null;
try {
 data = (CommData)ois.readObject();

 if (data.messageType != MessageType.SEND_IDENT) {
 closeStreams();
 closeSocket();
 return;
 }
}
catch (ClassNotFoundException cnfe) {
 System.err.println("ClassNotFoundException reading SEND_IDENT
request");
 cnfe.printStackTrace();
 closeStreams();
 closeSocket();
 return;
}
catch (IOException ioe) {
 System.err.println("IOException reading SEND_IDENT request");
 ioe.printStackTrace();
 closeStreams();
 closeSocket();
 return;
}

This code blocks while waiting for its ObjectInputStream to read an instance of

CommData, handling the ClassNotFoundException that occurs if the result is not

an instance of that class as well as any possible IOException that might occur during

11

the operation. It also checks to ensure that the received object’s messageType field
contains the appropriate value, since this will always be the first thing sent by a handler.

The TimeServer’s handler, after sending the message to be received by player code much

like that above, will execute similar code awaiting the player’s reply. That reply must be

an instance of CommData which has a messageType field that has a value of

MessageType.IDENT; it must also contain appropriate values for the group name,

player name and the timeUnits field. Sample code for sending this key message
might look like the following:

// Reply with IDENT
try {
 sendMessage(CommData.IDENT(groupName, playerName, timeUnits));
}
catch (IOException ioe) { /* handle the exception here */ }

Note the use of the static convenience method on the CommData class.

6.2.2 READY…or Not

If the values placed in the IDENT message are for some reason not acceptable, the next
message received from the handler will indicate the nature of the problem. The reply

would then contain one of the following messageType values:

• MessageType.INVALID_REPLY – indicates that the message sent was not an

IDENT message or that either of the group or player name fields were null.

• MessageType.UNKNOWN_GROUP – indicates that the message referred to a
group name which is not known by the TimeServer.

• MessageType.GROUP_FULL – indicates that the named group already has the
expected number of players and will not honor the request (this will never occur

when a monitor is connecting, as all will use the name “Monitor” and will not be

counted).

• MessageType.DUPLICATE_PLAYER_NAME – indicates that the message
included a player name which has already been used within the group (this will

not occur when a monitor is connecting).

• MessageType.ERROR – indicates that some other unexpected condition
prevented the group from accepting the player’s request to participate. There may

be additional details as to the actual source of the problem in the server’s display

window or in its redirection files.

If any of these situations should occur, the TimeServer’s handler will wait briefly to

allow time for the reply message to received by the new player or monitor and then close

the streams and socket, preventing any further attempts to communicate until a new

connection is established.

Otherwise, the reply to a successful IDENT message will have a messageType field

that has a value of MessageType.READY. The TimeServer and players (or monitors)
are now free to communicate according to the protocols described in the next section.

12

6.2.3 Protocol Message Sequences

The tables below list the messages that may be sent from players, monitors or from the

TimeServer itself after the initial exchange already described. All message type entries in

the tables represent constants from the MessageType class.

Player Message Types Description Other Fields

Required

Expected Response

REQUEST_TIME_ADVANCE Ask server to advance time to
the value indicated; server

will forward to all monitors

but will never send messages
of this type to players.

Requested time, in
player’s own time

units.

REQUESTED_TIME_IN_PAST
if time is already past;

RESET_NOT_SENT if player has

previously sent END_RUN;
otherwise none.

END_RUN Advises the server that the

player will wait for receipt of

a GROUP_RESET_TIME
message before proceeding

further (equivalent to a
SIMPROCESS replication

ending when Reset System is

specified in a model’s Run
Settings).

None None; player should send no

further messages until it receives

a GROUP_RESET_TIME
message.

BAD_DATA_PACKET,
CONNECTION_CLOSED,
UNKNOWN_ERROR

These messages from any

player will be treated as error
conditions; all monitors and

remaining players will

receive a
PLAYER_TERMINATION
notice for the sending player.

None None

GET_CURRENT_TIME Asks the TimeServer to send
the current time for the group.

None CURRENT_TIME in player’s own
time units

PLAYER_COMPLETION Advises the server that this
player is completing its

participation and

disconnecting.

None None; server will forward to all
remaining players and all

monitors with the player’s name

added.

PLAYER_TERMINATION Sent by player to advise the
server when dropping out.

None None; server will forward to all
remaining players and all

monitors with the player’s name

added.

Table 1: Message types allowed from Players

Monitor Message Types Description Other Fields

Required

Expected Response

GET_CURRENT_TIME Asks the TimeServer to send

the current time for the group.

None CURRENT_TIME in monitor’s
own time units

PLAYER_COMPLETION Advises the server that this

monitor is disconnecting.

None None

Table 2: Message types allowed from Monitors

TimeServer Message Types Description Recipient Other Fields

Required

Expected

Response

REQUEST_TIME_ADVANCE When received from any

player and no error reply is
warranted, forwarded to all

monitors

All monitors Name of requesting

player and time
requested, in

monitor’s time units.

None

REQUESTED_TIME_IN_PAST Sent to any player in reply to a
REQUEST_TIME_ADVANCE
message when the requested

time has already passed.

Requesting player
only

None None

13

TimeServer Message Types Description Recipient Other Fields

Required

Expected

Response

RESET_NOT_SENT Sent to any player in reply to a
REQUEST_TIME_ADVANCE
message when the player

previously sent END_RUN.

Requesting player

only

None None

CURRENT_TIME Sent in response to a
GET_CURRENT_TIME
message.

Requesting
monitor only if

requested by a

monitor;
otherwise to

requesting player

and all monitors.

Name of requesting
player and time

requested, in

monitor’s time units.

None

PLAYER_TERMINATION Sent to advise that one player
has dropped out.

All remaining
players and all

monitors.

Name of player
terminating.

None

PLAYER_COMPLETION Sent to advise that one player
has reported completion.

All players and
all monitors.

Name of player
terminating.

None

GROUP_RESET_TIME Sent to advise that the operator

of the TimeServer has reset the
group’s time to zero; will also

be sent if all players have sent

END_RUN messages.

All players and

monitors.

None Players may

respond by
terminating or

completing if

they cannot
comply.

GROUP_REINITIALIZE Sent to advise that the operator

of the TimeServer has

reinitialized the group.

All players and

monitors.

None All players and

monitors must

disconnect.

SERVER_STOPPING Sent to advise that the operator

of the TimeServer has

instructed it to shut down.

All players and

monitors.

None All players and

monitors should

disconnect; the
TimeServer

program is

terminating and
will break all

connections.

Table 3: Message types sent by the TimeServer

If any player or monitor sends a message not described above, it will be noted in the

TimeServer window’s display window if debugging is enabled but will otherwise be

discarded.

6.3 Developing a TimeServer Interface using JNI

The SIMPROCESS TimeServer application is written entirely in Java, which makes it

able to run on a variety of platforms (whether or not SIMPROCESS is available for

them). However, that does not preclude the possibility of another non-Java application

being able to participate in a group’s simulation activities. The Java Native Interface

(JNI) is a specification from Sun Microsystems that allows Java code to call platform

native code written in C or C++, and vice versa. If you are interested in adapting an

application to use the features of the TimeServer application, contact us to discuss it.

7 What Messages Mean to Players
The preceding section provides technical details needed to implement a player

application. But it’s important for those using existing player applications, such as

SIMPROCESS, to understand what some messages mean to them.

14

7.1 Basic TimeServer Philosophy

The TimeServer application’s only purpose is to provide a simple time management

service. That can best be accomplished by imposing as few rules as possible on what

players do. Therefore, the TimeServer doesn’t need to understand concepts that player

applications might need, such as SIMPROCESS replications or warm-ups. On the other

hand, it needs to provide ways that some of those concepts can be embodied in the

service that it does provide. The explanations that follow for some of the messages and

TimeServer responses are sometimes in terms of a SIMPROCESS concept, but it’s

important to understand that the TimeServer is deliberately aimed at providing a service

that can be utilized by any player application.

7.2 Player Messages

7.2.1 Error Messages from Players

When a player sends a BAD_DATA_PACKET, CONNECTION_CLOSED, or

UNKNOWN_ERROR message, it will be viewed by the TimeServer as an exceptional
situation that it’s unable to handle. The connection to that player will be invalidated, and

all remaining players and monitors will be sent a PLAYER_TERMINATION message to
inform them of the loss of a player. In other words, receipt of any of these message types

will be as if the player had sent a PLAYER_TERMINATION message (see below).

7.2.2 PLAYER_TERMINATION

Any player can elect to terminate its participation prematurely for any reason it may

choose. When it does so, it is expected to send a PLAYER_TERMINATION message.
When SIMPROCESS terminates a simulation due to an error, it will send such a

message. When SIMPROCESS receives a PLAYER_TERMINATION message noting
that another player has stopped early, its response will be to ask whether to allow the

simulation to continue. If allowed, it will continue normally; if not, it will send its own

PLAYER_TERMINATION message.

7.2.3 REQUEST_TIME_ADVANCE

This is the type of message all players are required to send in order to synchronize their

time clocks with the TimeServer. The following are the steps a TimeServer will take

each time it receives one of these messages:

1. The identity of the player sending the message will be checked to see if it has

previously sent an END_RUN message. If it has, the TimeServer will reject the

request and send a RESET_NOT_SENT message in reply.
2. The requested time (after converting it into Nanoseconds, since the TimeServer

tracks its own time in that unit of measure) will be examined to see if it is in the

past. If it is, the TimeServer will send a REQUESTED_TIME_IN_PAST
message in reply and reject the request. Otherwise, the request is accepted.

3. Having been accepted, the TimeServer will first notify any monitors of the

request and then place it on a list with any others it has previously received. It

will then check to see if it should send all players a new ADVANCE_TO_TIME
message. The conditions that must be met are:

15

• All expected players (as indicated in the configuration of the TimeServer)

must have joined the group;

• The number of players still participating (those who have not yet sent

PLAYER_COMPLETION, error or PLAYER_TERMINATION messages) must
be greater than zero;

• All of those remaining players must either have previously submitted their

own REQUEST_TIME_ADVANCE messages or be on the list of players who

have sent END_RUN messages.

4. When these conditions have been met, a new ADVANCE_TO_TIME message will
be built using the smallest requested value found on any of the requests. This

message will then be sent to all players except those having sent END_RUN
messages, and to all monitors.

7.2.4 PLAYER_COMPLETION

When a player reaches what it considers to be the conclusion of its simulation activities,

it should send a PLAYER_COMPLETION message. When the TimeServer receives this
message, it first forwards it on to all monitors and all players (including the sender). It

then removes the sender from its list of active players. Finally, the TimeServer takes two

additional steps to see if the removal of this player warrants further action. First, it

checks the list of REQUEST_TIME_ADVANCE messages to see if the reduction in player

count satisfies the conditions described above and sends a new ADVANCE_TO_TIME

message if appropriate. Then it checks the list of players having sent END_RUN

messages to determine if it should send a GROUP_RESET_TIME message (see the

description of END_RUN below).

7.2.5 END_RUN

The END_RUN message signifies that a player has reached a point where it requires
resetting simulation time to 0.0 in order to continue. In SIMPROCESS models, this

occurs when a model has multiple replications and Reset System is set in its Run
Settings. (This may or may not have an analog in other players.) After sending its

END_RUN message, a player should send no additional messages until it receives a

GROUP_RESET_TIME message. In a SIMPROCESS model meeting the above

conditions, an END_RUN message will be sent at the end of each replication except the

last; that one will send a PLAYER_COMPLETION message instead.

When the TimeServer receives an END_RUN message, it will start by adding the sender
to its list of those waiting for time to be reset. Then it will check its conditions to see if it

should send a GROUP_RESET_TIME message. The conditions that must be met are:

• All expected players must have joined the group, as indicated in the

configuration of the TimeServer;

• The number of players still participating (those who have not yet sent

PLAYER_COMPLETION or PLAYER_TERMINATION messages) must be
greater than zero;

16

• The list of players having sent END_RUN messages must include all remaining
players.

Once these conditions are met, the TimeServer will send a new GROUP_RESET_TIME
message to all players. It will also reset its own time to 0.0.

7.2.6 GET_CURRENT_TIME

Any player may ask the TimeServer to tell it the current time by sending a message of

this type. When received, the reply will be a CURRENT_TIME message using the
player’s own time units and the time as maintained by the TimeServer. SIMPROCESS

does not send messages of this type.

7.3 TimeServer Messages

Aside from the responses to player messages just described, there are three additional

messages that might come to a player from the TimeServer unsolicited.

7.3.1 GROUP_RESET_TIME

This message may be sent when all players have sent END_RUN messages. But it may
also be sent in response to actions taken by the operator of the TimeServer application

itself. If the TimeServer’s menus are used to cause a group to reset its time, a message of

this type will be sent to all players and monitors in the group. In SIMPROCESS,

receiving a GROUP_RESET_TIME message when it isn’t expected will be treated as an
error condition and the simulation will end.

7.3.2 GROUP_REINITIALIZE

This message can only be sent in response to a menu item on the TimeServer application.

When sent, it will indicate that the group is being reinitialized as though the TimeServer

had just been launched. No further communication with the group will be possible

without first going through the initial steps described in an earlier section. When a model

in SIMPROCESS receives this type of message, it will be treated as an error and the

simulation terminated.

7.3.3 SERVER_STOPPING

This message can only be sent when the operator of the TimeServer application has told

it to shut down by either closing its window or using a menu item. When this type of

message is received, the only possible action is to stop all communication. When

SIMPROCESS receives such a message, it will terminate the simulation.

