

SIMPROCESS®
and

Dispatcher

SIMPROCESS as a Service
OptQuest® for SIMPROCESS as a Service

SIMPROCESS and Dispatcher

i

Table of Contents

1 Introduction... 1
2 SIMPROCESS and Dispatcher Installation .. 1
3 Licensing... 1

3.1 The License Server ... 2
3.2 The license.dat File ... 2

4 The RegistryServer Application ... 3
4.1.1 Configuring RegistryServer .. 3
4.1.2 Running RegistryServer.. 4
4.1.3 Running RegistryServer as a Windows Service ... 4
4.1.4 Running RegistryServer as a Server on Other Systems.............................. 6
4.1.5 Shutting Down the RegistryServer Server .. 6

5 Dispatcher ... 7
5.1.1 Locating a RegistryServer... 7
5.1.2 Resetting or Appending Dispatcher Log Files.. 8
5.1.3 Dispatcher Debugging .. 8
5.1.4 Locating a License Server... 8
5.1.5 How Many Dispatchers?... 8
5.1.6 Application or Server? .. 9

6 DispatcherService ... 11
6.1 Installed DispatcherService Components ... 11
6.2 Configuration Options .. 12

6.2.1 Locating the RegistryServer ... 12
6.2.2 Other Property Settings... 12
6.2.3 Changing Properties after Starting DispatcherService 14

6.3 Deploying the DispatcherService ... 14
6.4 DispatcherService Operations... 15

6.4.1 DispatcherService Usage Scenarios.. 15
6.4.2 Available DispatcherService Operations .. 17

7 Client Applications ... 48
Error Numbers and Descriptions ...Appendix A
SimulationStatus Source Listing..Appendix B

SIMPROCESS and Dispatcher

1

1 Introduction
SIMPROCESS® has a proven track record in its role as a modeling and simulation tool.
More and more often, however, it’s useful to be able to call on simulation capabilities and
use the results to make automated business decisions. SIMPROCESS can now provide
that capability through the DispatcherService, a Web service that can be deployed in a
Web Container (an application supporting the Java Servlet Specification) or Application
Server, and the SIMPROCESS Dispatcher. This document provides details on the
components required to use this capability.

2 SIMPROCESS and Dispatcher Installation
In order to use the Dispatcher and related features, an alternate install set is offered by the
installer, called “SIMPROCESS and Dispatcher.” This is not the default set and must be
specifically selected. It provides all the components needed to use SIMPROCESS as a
regular desktop application, but it also includes new components which allow use of the
Dispatcher to invoke SIMPROCESS services. The key additions are described here.

 Dispatcher is the new program (it will have the.exe extension on Windows
systems) that controls the operation of one or more instances of SIMPROCESS or
OptQuest for SIMPROCESS when requests arrive from the DispatcherService.

 dispatcher is the directory containing all of the other components needed to run
SIMPROCESS services (including the DispatcherService deployment files). Its
precise contents will vary according to the platform on which installation occurs.
More detailed information on some of these components will appear later to
explain their configuration and operation.

Installation is but one of the steps that enable SIMPROCESS or OptQuest for
SIMPROCESS to operate as services. The DispatcherService, included among the
components in the new dispatcher directory, will be described in detail later. It is the
gateway through which a client application obtains SIMPROCESS services. A Web
Container or Application Server will be required in order to deploy and use the
DispatcherService. A client application must be available that knows how to
communicate with the DispatcherService. A Dispatcher must be able to advertise that its
services are available to a DispatcherService. The DispatcherService must know where
to look for the list of service providers. And finally, a Dispatcher must be able to obtain
licenses when services are requested.

The next section provides information on licensing for the Dispatcher. The remaining
sections provide information on the configuration and operation of all other components.

3 Licensing
The licensing of SIMPROCESS as a desktop application is described in Chapter 2 of the
SIMPROCESS Getting Started manual. SIMPROCESS can still be used that way with
the additional Dispatcher-related components installed (although running it at the same
time that the Dispatcher is responding to requests is not recommended). The Dispatcher,
however, is designed to operate as a server application which can start as many instances

SIMPROCESS and Dispatcher

2

of SIMPROCESS or OptQuest for SIMPROCESS as it is licensed to support. For that
reason, its licenses must be served by a FLEXlm license server.

3.1 The License Server
The components required to set up and operate a FLEXlm license server are not included
with the installer. Instead, they will be provided separately by your SIMPROCESS
technical support team. This gives you the flexibility to decide where you want to place
your license server.

Although FLEXlm license servers are available for a variety of platforms (combinations
of operating systems and processors), it is only possible to serve SIMPROCESS licenses
on a platform for which SIMPROCESS itself is available. All binary files required for a
license server can be downloaded from Macrovision except for our “vendor daemon”
program, dcacisim, and we can only compile it for those platforms on which we currently
offer SIMPROCESS. However, it is possible to mix and match among these platforms to
suit your needs. That is, you might wish to run the Dispatcher on a Linux system (where
performance will often be significantly better than on Windows) and place your license
server on a Windows platform. Or you may wish to run multiple Dispatcher installations,
perhaps even on mixed platforms, sharing a pool of licenses from a single license server.

The available options provide you with greater flexibility and control over distribution of
the workload. Your SIMPROCESS technical support team will help you choose a license
server strategy that best suits your operational needs.

3.2 The license.dat File
The Dispatcher application must obtain a license before it can launch an instance of
SIMPROCESS or OptQuest for SIMPROCESS when services are requested. The
information on how to contact the license server is contained in a license file that must
reside in the dispatcher directory. It should be a copy of the license.dat file used by the
license server, and it must also have that name.

To obtain a license file, you must provide the SIMPROCESS Help Desk with the hostid
value of the system on which your FLEXlm license server will run. If the license server
will be on the same operating system as your Dispatcher, you can use the hostid.bat or
hostid.sh included in the root of the SIMPROCESS installation directory to put this value
into the hostid.txt file. If not, the Help Desk can provide you with a copy of the lmutil
program for the license server’s particular platform and instructions on how to have it put
your hostid value in a file that you can send to them to obtain a license file.

Once you’ve received the license.dat file, you’ll need to know that only one portion of its
contents can be edited without invalidating the contents. The first line of the file will
look something like the following sample:

SERVER 192.168.30.30 0060970572a5

http://www.macrovision.com/services/support/flexlm/lmgrd.shtml

SIMPROCESS and Dispatcher

3

First is the keyword SERVER, which must never be changed. The last part will be the
hostid value that was provided to the Help Desk to obtain the license file; it must also
never be changed. The middle part, however, is the Internet Protocol (IP) address of the
system on which the license server is to run. Because network configurations sometimes
change, this value can be changed if required. If possible, however, it’s usually a best to
use a name in this position (e.g., myhost.mycompany.com) rather than an actual
numerical IP address, and ensure that all installed Dispatcher applications communicating
with this license server can resolve the name to the correct machine. On the server itself,
it’s allowable to replace the IP address with the keyword this_host, which eliminates the
need to change the file should the system’s IP address change. If the license server will
reside on the same system as a Dispatcher, then that Dispatcher’s license.dat file may
also use the this_host keyword. Any other changes in the license file will render it
invalid and the Dispatcher will be unable to obtain licenses to run SIMPROCESS
instances.

4 The RegistryServer Application
The RegistryServer is the smallest piece of the complete puzzle, but without it nothing
else will work. The RegistryServer is the means by which a Dispatcher advertises that its
services are available. It’s the means by which a DispatcherService locates available
Dispatchers to obtain SIMPROCESS services. It provides a registry – a place where
other things can deposit and look up information. Therefore, the RegistryServer must be
running in order for any Dispatcher to register itself as an available service provider. In
addition, the DispatcherService must know where it can be found so that it can obtain a
list of available service providers. Later sections contain further configuration details for
those components.

4.1.1 Configuring RegistryServer
The registry.properties file must be in the same directory with dispatcher.jar for proper
operation. In most situations, the original contents of this file will work properly on any
system without changes, but it may be necessary to modify specific entries.

 The line “java.naming.provider.url=rmi://localhost:5700” should only be changed
if port 5700 is in conflict with another application on the network. This port was
selected because it is not reserved for use by any well known network service. If
it is necessary to change this port, it’s important that the same value be used in the
properties files for both the Dispatcher and the DispatcherService so that both will
know how to find the RegistryServer application. Do not change any other
portion of this line.

 The line “#registry.logging=true” should not normally be enabled. However, if
there is a significant problem with network communications, enabling this line by
removing the “#” will cause RegistryServer to log all communications. This will
produce a large amount of output, so it should only be done if absolutely essential.
Enabling this line while RegistryServer is running will not enable logging.

 The line “log.reset=true” will instruct RegistryServer to reset its log and error file
when starting, rather than appending to any existing contents. This line can be
removed, or it may be disabled by placing a “#” character at the beginning. When
any value other than “true” is found, the log and error output will be appended to

SIMPROCESS and Dispatcher

4

any existing information in the files. Changing this setting will require stopping
and restarting RegistryServer.

 The line “#registry.debugging=true” can be enabled by removing the “#” at the
beginning if debugging output is desired. This is normally not required except
perhaps during initial deployment testing. In normal usage (i.e., with this line
disabled), there will be very little output placed into the log and error files. When
enabled, some of the internal logic will display information into the log file about
calls received and information provided in response. Enabling this line while
RegistryServer is running will not enable debugging output.

4.1.2 Running RegistryServer
The RegistryServer application is specifically designed not to depend on any particular
hardware or operating system. It only requires that the system on which it runs has a Java
Runtime Environment (JRE) that is fully compatible with Sun’s Java 5.0 (also called Java
1.5) or newer. Therefore, it does not have to be run within the confines of the
SIMPROCESS directory structure, and it may be hosted on any available system with a
compatible JRE. The installer provides the files RegistryServer.sh and
RegistryServer.bat in the dispatcher directory, which are preconfigured examples of how
to run it using the JRE installed with SIMPROCESS. These can be used as examples for
running RegistryServer on any system with a compatible JRE. To run RegistryServer, its
two required files must be in the same directory:

 dispatcher.jar
 registry.properties

RegistryServer has been tested on Windows 2000, Windows XP Professional, Windows
2003 Server, Mac OS X 10.4 and Linux Mandrake 9.1. On Mac OS X the test used
Apple’s Java 1.5 JRE, while the others were tested with a JRE obtained from Sun
Microsystems at http://java.sun.com.

4.1.3 Running RegistryServer as a Windows Service
It will usually be preferable to run RegistryServer so that it requires no user intervention.
That is, it should be able to start up and run automatically without a user session being
kept active to support it. On Windows systems, this can be accomplished by installing it
as a Windows Service.

The “SIMPROCESS and Dispatcher” install set will include all the files needed to do this
(even if installing on a non-Windows platform). If you wish to install RegistryServer as a
Service on a Windows system other than the one on which the Dispatcher will operate,
the files described in the following paragraphs will need to be copied to the same
directory as the dispatcher.jar and registry.properties files described above, though one
of them will require additional changes to be made. Here are the files provided, along
with instructions on their use.

4.1.3.1 RegistryService.exe
This executable file will install the Windows Service using parameters passed to it by the
RegistryServiceInstall.bat file.

http://java.sun.com

SIMPROCESS and Dispatcher

5

4.1.3.2 RegistryServiceInstall.bat
This batch file executes the RegistryService.exe program and passes parameters that will
cause it to install a Service named “SIMPROCESS RegistryService” that will start
automatically each time your system starts up. As initially provided by the installer, it
will only work correctly when run from the dispatcher directory of SIMPROCESS. To
install RegistryServer as a Service on another Windows system, this file must be edited.
The seven steps defined in comments in the original will serve as the basis for explaining
what changes must be made there.

 Steps 1 and 2 are used in the installed SIMPROCESS setting to obtain the
complete directory name where SIMPROCESS was installed. These can be
removed in a copy to be used on another system. Alternatively, you can change
either or both of them to provide information required in later steps.

 Step 3 sets the variable JVMLoc to the complete path of a file named jvm.dll
included with the JRE for running RegistryServer. For the modified copy of this
file, change this line to provide the full path to that file in the JRE to be used. For
example, if the system contains Sun’s Java Plug-in for use with applets in web
browsers, there will be a JRE included in it. The complete path on a typical
system might be C:\Program Files\Java\jre1.5.0_06\bin\client\jvm.dll. It’s also
important to note that a path containing spaces (like this one does) must be
enclosed in quotes. So the resulting line might look like this:

set JVMLoc="C:\Program Files\Java\jre1.5.0_06\bin\client\jvm.dll"

 Step 4 sets the variable WorkDir to the path of the “working directory” where

RegistryServer will run. This will allow it to find its registry.properties file, and
is where its log and error files will be created (named DispatcherRegistry.log and
DispatcherRegistry.err). Just as with JVMLoc, this requires quotes if any spaces
appear in the name (they are allowed even if there are no spaces). The directory
can be any place you choose, so the command might look like this:

set WorkDir="D:\work\registryserver"

 The remaining steps must not be changed. Note Step 6, however, which actually

installs the new Service using the name “SIMPROCESS RegistryServer.” If no
problem occurs, the system will display a message saying that the installation of
the new Service was successful. Step 7 then reminds you that the newly installed
Service must be started, or that it will start automatically upon restarting your
system.

 To start the new Service once installation is accomplished, you can go to the
Windows Control Panel and select Administrative Tools, then Services. Select
the Service to start or stop it as needed.

4.1.3.3 RegistryServiceUninstall.bat
This batch file uninstalls the Windows Service named “SIMPROCESS RegistryService.”
It will fail if the Service is currently running. No changes to this file will be required. It
must reside in the same directory with RegistryService.exe.

SIMPROCESS and Dispatcher

6

4.1.4 Running RegistryServer as a Server on Other Systems
Java programs have a tendency to shut themselves down when any kind of user logoff
action occurs. As a result, RegistryServer couldn’t simply be run as a Scheduled Task in
Windows since it would terminate if any user logged off the system at the completion of
some task. A similar problem can arise on Unix-based systems (which includes Linux,
Mac OS X, and many others), so that simply running the program in the background by
appending an ampersand (“&”) to the command will not necessarily work. Here are two
alternatives which might be useful to deal with this issue when running RegistryServer on
these systems.

 Use the nohup command. This is usually done by preceding the command with
the word “nohup” and following it with an ampersand to put it in the background
(for example, nohup ./RegistryServer.sh &). When using nohup, a program will
not stop when the user logs off the system (“hangs up”). Instead, it continues to
run in the background. This may not be an ideal solution, however, depending on
the method used to connect to the system, as it sometimes prevents proper
termination of X-server sessions or has other undesirable side effects. It will also
require that you repeat the process after a system restart.

 Add the appropriate command to a system startup file. (Precise details will vary
with the operating system.) Some Linux systems, for instance, look for a file
named /etc/rc.d/rc.local to be executed during the system startup process. Putting
an entry here to start the RegistryServer will ensure that it’s run every time your
system starts, which guarantees that it will be available. So you might make an
entry that will run a shell script or Java command line as a non-privileged user
(i.e., a user other than root – you should never use root for such purposes)
something like this:

/bin/su username -c "cd dirname;./scriptname.sh"

4.1.5 Shutting Down the RegistryServer Server
Sometimes you’ll want to shut down the RegistryServer without shutting down the entire
system. If you installed your RegistryServer as a Windows service, instructions are
provided above for shutting it down. If you’ve set it up to run as a server on a non-
Windows system, read on. In either case, it’s wise to ensure that any Dispatchers which
refer to it are shut down first. Shutting them down lets them remove their entries from
the RegistryServer and clean up, rather than being orphaned and shutting down due to a
communication failure.

When shutting down RegistryServer on Unix-based platforms, you’ll want to understand
the proper (and safe) method of shutting it down. The key is to find the first “java”
process in the set of processes that were created by starting it. Look at a detailed process
list using a form of ps appropriate to the operating system and trace the Process ID (PID)
values to find the first one in the chain. If you’ve used a shell script file, you’ll want to
use the first “java” process owned by it and not the PID of the shell command itself.
Now you need to stop that process with the kill command and an appropriate signal.
Many signals will either have no effect, or may result in an improper (and thus unsafe)

SIMPROCESS and Dispatcher

7

shutdown. To ensure that RegistryServer is able to shut down cleanly, you should always
use SIGINT, which is an interrupt signal. If RegistryServer.sh were run from a command
line, using the Ctrl+C key combination delivers a SIGINT to the program, which lets it
shut down cleanly. Sending SIGINT with the kill command does the same when it’s in
the background. You may need to use man kill to learn the appropriate form of the kill
command to use on your particular system.

5 Dispatcher
The Dispatcher has previously been addressed in terms of licensing, but that omitted the
details of its configuration and operation. Now it’s time to fill in those details.

5.1.1 Locating a RegistryServer
As was noted earlier, the RegistryServer is a critical part of providing SIMPROCESS or
OptQuest for SIMPROCESS services. A Dispatcher must be able to communicate with a
RegistryServer on startup to list itself as a provider of SIMPROCESS services. Its
configuration must tell it where to find a RegistryServer, and it must be able to
successfully communicate with it in order to function. If it cannot do so, it will shut itself
down. The information required to locate a RegistryServer is found in the file named
dispatcher.properties, which the installer places in the dispatcher directory. This file
must always be in this directory. Here is the portion of the installed file that tells a
Dispatcher how to find its RegistryServer:

Naming provider URL
If RegistryServer is not running at port 5700, change the port number
in the line below to match.

Determine the hostname or IP where RegistryServer is running if not
on the same system with the Dispatcher and replace "localhost" with
that value.

java.naming.provider.url=rmi://localhost:5700

Much of this is comment text explaining what the property must contain. There are only
two specific parts that can be changed without rendering the file useless: (1) localhost
and (2) 5700. The first item, localhost, is a universal name which refers to the same
computer on which the Dispatcher application is running. If RegistryServer is running on
the same system as the Dispatcher, this value can remain unchanged. If not, it should be
changed to an IP address or to a name that the system can resolve to the IP address of the
system where RegistryServer is running (e.g., myhost.mycompany.com). The second
item is the network port over which communication will occur between the Dispatcher
and RegistryServer applications. This should only be changed if the port for
RegistryServer was changed in its registry.properties file.

Important: The Dispatcher requires a RegistryServer to be reachable upon startup.
Therefore, if a RegistryServer cannot be reached using the values in this properties file
when starting up, it will shut down immediately and record the trouble in its output
file(s). Always make sure the RegistryServer is available before starting the Dispatcher.

SIMPROCESS and Dispatcher

8

5.1.2 Resetting or Appending Dispatcher Log Files
The dispatcher.properties file contains a line which reads “log.reset=true” which governs
whether the Dispatcher.log and Dispatcher.err files will be reset or whether any existing
content will be appended to when the Dispatcher starts. As initially set, the Dispatcher
will clear any existing content in these files at startup. If this line is removed, disabled by
placing a “#” at the beginning, or contains any value other than “true” then the existing
content will remain and new output will be appended to it.

5.1.3 Dispatcher Debugging
Only one other property in the dispatcher.properties file should ever be changed. The
last line in the installed file reads “#dispatcher.debugging=true” and should ordinarily be
left alone. However, if additional information is desired in the Dispatcher’s log and error
files (or its window when running the application directly, as described later), the “#” can
be removed at the beginning to enable debugging output. This puts a significant amount
of output into the log and error files (Dispatcher.log and Dispatcher.err) that is primarily
only useful to developers. Enabling it is not generally recommended.

5.1.4 Locating a License Server
A Dispatcher does not depend upon being able to communicate with a FLEXlm license
server at initial startup. However, it must be able to check out a license when asked to
provide SIMPROCESS services. If it cannot, it is unable to render the requested services
and responds accordingly. For a Dispatcher to provide services, it must (1) be able to
communicate with the FLEXlm license server identified in its license.dat file, and (2) the
license server must have an available license when requested. If it cannot contact the
license server, or if the server is unable to grant a license request for any reason, then the
Dispatcher will reply that it is unable to provide the requested services.

5.1.5 How Many Dispatchers?
It is possible to run more than one Dispatcher from a single SIMPROCESS installation.
However, because of the way that each one writes to its log and error files, this would
result in sharing of files and is generally not recommended. On a limited basis, it may be
useful for initial testing, but should otherwise be avoided.

To run more than one Dispatcher on a single computer system, install multiple copies of
SIMPROCESS. Each Dispatcher will have its own properties file, and each will write to
separate log and error files, eliminating any potential conflicts. Each must also have its
own license.dat file to enable it to communicate with a license server.

Windows systems typically don’t perform sufficiently well to make multiple installations
practical, but Linux systems are ideal for such purposes. They tend to do much better at
memory management and are better suited to running large numbers of applications
simultaneously. If a Windows system is to host multiple Dispatchers, it should have the
fastest possible processor and the maximum possible amount of RAM per licensed
SIMPROCESS feature. In addition, if run as a Service (see below), there may be special
considerations needed in setting up each one.

SIMPROCESS and Dispatcher

9

5.1.6 Application or Server?
There are two distinct ways to run a Dispatcher. One is as an application, where a user
starts the program and it shows a window. The other is as a server, where the program
runs without user interaction and will typically be able to run with no user logged on.

5.1.6.1 Application
To run the Dispatcher as an application, first make sure that all previously mentioned
criteria have been met. That is, make sure that the required information is provided to
communicate with a FLEXlm license server and RegistryServer as needed. Then run the
Dispatcher program found in the root of the SIMPROCESS installation directory. When
run in this way, the Dispatcher will display a window. This window will display a
message at startup indicating the internal name by which it will be known (this name is
only meaningful to the RegistryServer). During Dispatcher operations, it will display
occasional messages indicating that it has received and responded to requests for
services. (There will be much more information in this window and the log and error
files if debugging is enabled.) Running a Dispatcher as an application can be useful for
becoming familiar with how it works, for testing situations where multiple Dispatchers
may be helpful, or a variety of other purposes. A Dispatcher run in this manner can be
shut down by using its File menu, or simply by closing its window. When this occurs, it
will prompt for confirmation if any SIMPROCESS or OptQuest for SIMPROCESS
instances are still running. Instances must periodically confirm that they can still
communicate with their owning Dispatcher and will shut down when that fails. A
Dispatcher controls the licenses it checks out, so its termination frees all licenses it holds
and leaves instances without valid authorizations.

5.1.6.2 Server
The most common use of a Dispatcher will be in a setting where it can run with no user
interaction (i.e., no user session is needed) and it will not be hampered by users logging
on to perform some task and then logging off again. Just how this is accomplished will
depend on the platform where it will be running.

5.1.6.2.1 Running Dispatcher as a Windows Service
When installed on a Windows system, the dispatcher directory contains files that allow
the installation of a Windows Service that will automatically run each time the system is
booted. These files are described below.

 DispatcherServer.exe is the executable program which installs a Windows Service
named “SIMPROCESS Dispatcher” using the additional parameters provided by
a batch file.

 DispatcherServerInstall.bat is a batch file that executes DispatcherServer.exe and
provides it the necessary parameters.

 DispatcherServerUninstall.bat is a batch file that executes DispatcherServer.exe
to uninstall the previously installed Windows Service named “SIMPROCESS
Dispatcher.” Note that the service must be stopped before it can be successfully
uninstalled.

These files must remain in the directory where they are installed. Only the file named
DispatcherServerInstall.bat should ever be modified in any way, and then only under

SIMPROCESS and Dispatcher

10

certain conditions. Specifically, if the Dispatcher is to run as a Service on the same
system where a “SIMPROCESS RegistryServer” will also be installed, it’s advantageous
to change this file so that a dependency is established between the two. To do that, find
the following lines in the DispatcherServerInstall.bat file:

REM If dependency on the SIMPROCESS RegistryServer service
REM is desired, uncomment the following line.
REM set DEPENDS=-depends "SIMPROCESS RegistryServer"

On the last of those lines, remove the “REM” and the space which follows it, then save
the modified file. This will cause the new Service named “SIMPROCESS Dispatcher” to
be dependent on the “SIMPROCESS RegistryServer” so that the latter will automatically
start if it’s not running.

Now simply double-click the batch file to install the Service. A reminder will appear
stating that you’ll need to start the Service manually unless you wish to restart your
system. To start manually, use the Windows Control Panel and choose Administrative
Tools, then Services. In the list of Services, select the “SIMPROCESS Dispatcher” and
start it. If the dependency is set, this will also start “SIMPROCESS RegistryServer” if
necessary.

5.1.6.2.2 As a Server on Other Systems
As stated earlier, Java programs have a tendency to shut themselves down when any kind
of user logoff action occurs. So on Unix-based platforms, simply running the Dispatcher
in the background by appending an ampersand (“&”) to the command will not work.
Here are two alternatives which might be useful for running Dispatcher as a server on
these systems.

 Run using the nohup command. This is usually done by preceding the command
with the word “nohup” and appending an ampersand to put it in the background
(e.g., nohup ./Dispatcher svc &). When using nohup, a program will not stop
when the user logs off the system (“hangs up”). Instead, it continues to run in the
background. This may not be an ideal solution, depending on the method used to
connect to the system, as it sometimes prevents proper termination of X-server
sessions or has other undesirable side effects. It will also require manually
starting the Dispatcher via the nohup command any time the system restarts.

 Add the appropriate command to a system startup file. (The precise details will
differ according to the actual operating system.) Some Linux systems, for
instance, look for a file named /etc/rc.d/rc.local that will be executed during the
system startup sequence. So you might make an entry that will run a shell script
as a non-privileged user (i.e., a user other than root – you should never use root
for such purposes) like this:

/bin/su username -c "cd installdir;sh Dispatcher svc"

Remember that the earlier discussion of running a Dispatcher as an application said that it
displays a window for user interaction. Clearly, that is not a good thing when running as
a server. For that reason, the Dispatcher is designed to alter its behavior when receiving a

SIMPROCESS and Dispatcher

11

command line parameter. In the two examples shown above, a parameter value of svc
was included on the command line. This signals to the Dispatcher that it is being run as a
server and suppresses the creation of its window. Failure to include this parameter will
not produce the desired results.

Important Note: When placing entries in system startup files for both a RegistryServer
and one or more Dispatchers on one system, be sure to start the RegistryServer first so
that each Dispatcher will be able to communicate with the RegistryServer.

There may be times when it’s necessary to shut down such a Dispatcher without shutting
down the entire system. There are two methods that may be used.

 Shut down the RegistryServer on which the Dispatcher depends. Each Dispatcher
periodically checks to determine if its RegistryServer is available. If it is not able
to communicate with its RegistryServer, it will shut down. This may not be a
good choice if more than one Dispatcher uses the same RegistryServer. Since the
RegistryServer may not reside on the same system (perhaps not even the same
operating system) where a Dispatcher runs, refer to the appropriate instructions
for how to shut it down.

 The preferred way to shut down a Dispatcher running as a server is to identify its
Process ID (PID) number and use the kill command. Only send the signal called
SIGINT, since any other will either be ignored or may not allow the Dispatcher an
opportunity to properly clean up (by removing its entry from the RegistryServer,
for instance). Finding the right PID can be a little tricky, and the precise form of
the ps command needed can vary among operating systems. When started with a
command like the example shown above, look for processes whose command
lines include the complete path to the installed JRE’s “java” command (e.g.,
/installdir/jre/bin/java) followed by “com.zerog.lax.LAX”. Select the first PID in
the sequence and send it a SIGINT to interrupt it. You may want to use man kill
to determine the correct form of the command for your system. The Dispatcher
will then shut down just as if it had been running as an application with a window
and the File menu was used to stop the program.

6 DispatcherService
The DispatcherService is the gateway to SIMPROCESS services for client applications.
Naturally, it will need to know about a RegistryServer to get a list of service providers.
And it will communicate with a Dispatcher registered there to obtain the services. But all
that is the magic behind the curtain. The client, generally speaking, will only know about
the DispatcherService. It will never interact directly with the other players. This section
tells you how to put the DispatcherService to work for a client.

6.1 Installed DispatcherService Components
In the dispatcher directory is a subdirectory named DispatcherService. It contains the
components you must deploy to provide SIMPROCESS services to client applications.
The files installed are listed below.

 Dispatcher.wsdl is the Web Services Description Language (WSDL) file which
describes the operations available from the deployed DispatcherService Web

SIMPROCESS and Dispatcher

12

service. It’s not necessary to have this file to deploy the service, since you’ll be
able to obtain one from your Web Container or Application Server, but for the
technically curious who want a head start, it can help in planning for the
development of a client application.

 Dispatcher-jaxrpc.war is a Web Archive (WAR) file containing the complete,
deployable DispatcherService. As its name implies, it was developed in Java
using Sun’s Java APIs for XML RPC (JAX-RPC). This isn’t really critical to
know for a client application developer, but technical people may recognize some
of the WSDL file’s contents more readily once they’re aware of this fact.

 dispatcherservice.properties is a properties file similar to those used by both the
Dispatcher and RegistryServer programs. It must be deployed along with the
WAR file so that the DispatcherService can find the location of a RegistryServer
to obtain a list of service providers, along with some other configuration options
described in the next paragraph.

6.2 Configuration Options
The dispatcherservice.properties file contains five items which can be set to affect its
operation.

6.2.1 Locating the RegistryServer
Just as with a Dispatcher, the DispatcherService must be able to find a RegistryServer
that has a list of service providers (Dispatchers). The properties file contains an entry for
this purpose, which initially appears as follows:

Naming provider URL
Determine the hostname or IP where RegistryServer is
running and use that instead of localhost.
If this property in the RegistryServer's properties
file is not using port 5700, change the port value
below to match its value.

java.naming.provider.url=rmi://localhost:5700

Only if the RegistryServer has used a port number other than 5700 in its own properties
file should that portion of this property be changed. The hostname localhost should
remain only if the RegistryServer is on the same system as the Web Container or
Application Server where you’ll deploy the DispatcherService. Otherwise, you should
change it to an IP address or hostname that will locate that system on the network.

6.2.2 Other Property Settings
The dispatcherservice.properties file contains a comment block indicating that all items
below it are configurable by the individual responsible for configuring and deploying the
DispatcherService. With the exception of the single item above, nothing else above this
comment block should be changed in any way. Here are the remaining configurable
properties and their uses.

SIMPROCESS and Dispatcher

13

Default timeout of instance in minutes. Must be positive.

instance.timeout.default=2

The default instance timeout is the default amount of time that can elapse without
commands being sent to a SIMPROCESS or OptQuest for SIMPROCESS instance
(known as an optimizer) before it will be considered idle. When an instance is started by
a client application sending an appropriate message to the DispatcherService, it will use
the timeout value provided if allowed. If the value provided is non-positive or greater
than the maximum (see below), this default value will be used instead. Each time the
DispatcherService’s timer fires, it will identify any instance deemed idle and ask its
Dispatcher to shut it down, thereby freeing a license. If the instance is running a
simulation or actively carrying out some other long-running request, it will reject the
request to shut down. It’s best to use a relatively small default timeout value to prevent
the possibility of an idle instance needlessly tying up a license.

Maximum timeout of instance in minutes. Must be positive.

instance.timeout.max=60

The maximum instance timeout is the largest timeout value that can be used when
starting an instance or by sending a message to set an instance’s timeout value. If any
message includes a timeout value larger than this, that value will be discarded and this
one used instead. This is useful to prevent an idle instance from unnecessarily tying up a
license.

Timer interval for checking timeouts (in minutes).
Must be positive.

timer.interval=2

This property determines how frequently the DispatcherService’s internal timer will fire.
Each time it fires, its list of instances will be checked to determine which ones have not
had any messages delivered for a sufficient period of time to exceed their timeout limits.
When one is found, its Dispatcher will be asked to shut it down. If it’s actively engaged
in receiving another command or simulating, the command to shut down will be
disregarded until the next timer firing occurs. If it responds that an error has occurred, its
Dispatcher will be asked to forcefully shut it down. Setting too small a value for this
property can result in too many requests for instance shutdown, thereby risking the
integrity of communications with any given Dispatcher. Using too large a value can
result in extended idle times that needlessly tie up licenses.

Debugging (should normally be disabled)

#service.debugging=true

SIMPROCESS and Dispatcher

14

The service.debugging property is initially disabled. To enable it, remove the “#” from
the beginning of the line. When enabled, the DispatcherService will write output into the
standard output and standard error files of the Web Container or Application Server
where it operates. The names and locations of those files depend on the product being
used. When debugging has been enabled, the service will display an indication when it’s
loaded for the first time as it constructs its timer, including displaying its timer interval.
It will also display messages at the start of its timer logic and then again at the end, along
with possible messages in between if it finds timed out instances and sends messages to
have them stopped.

6.2.3 Changing Properties after Starting DispatcherService
The DispatcherService reads its properties once when initially loaded by the Web
Container or Application Server where it’s deployed. If it becomes necessary to change
any of the properties in this file after loading, the service usually must be stopped and
restarted in order to have it read the newly modified file. The specific mechanism for
starting, stopping or restarting a Web service depends on the particular Web Container or
Application Server used, as do the details of where the dispatcherservice.properties file
should be placed.

6.3 Deploying the DispatcherService
The Dispatcher-jaxrpc.war file is self-contained (except for the properties file described
above) and ready to deploy into a suitable Web Container or Application Server. The
selected Web Container or Application Server must include support for the following
technologies:

 Java Servlet 2.3 specification
 Java API for XML-based RPC (JAX-RPC)

It must also include support for the Java API for XML Processing (JAXP), version 1.3 or
higher. JAXP 1.3 is included in Sun’s Java 2 Standard Edition (J2SE) version 1.5 (also
known as Java 5.0). JAXP and JAX-RPC support are both included with Java 2
Enterprise Edition (J2EE) 1.4. A Web Container or Application Server supporting the
J2EE 1.4 specification will likely meet these requirements.

Development and testing of DispatcherService was done using a modified version of the
Apache Tomcat servlet container supporting the required technologies. For its first real
world deployment, the customer chose to use Tomcat 5. So the ultimate choice of Web
Container or Application Server may depend very much on the specific needs of the
client application(s) which will interact with it. Thus the candidates listed here may not
include one that is suited to a particular environment or purpose, nor should the list be
considered exhaustive. Also, none of these products should be considered to be endorsed
by CACI or in any way recommended. This list is provided as a convenience only and
contains information which may assist in the selection of a product.

PRODUCT TYPE LICENSE ADDITIONAL COMMENTS
Tomcat Servlet

Container
Apache 2.0 Used in the official Reference Implementation for the Java

Servlet and JavaServer Pages specifications; can be integrated
with a web server if required

Caucho Resin Application
Server

GPL Can be integrated with a web server if required; commercial
version available

http://java.sun.com/products/servlet/overview.html
http://java.sun.com/xml/jaxp/index.jsp
http://java.sun.com/xml/jaxrpc/overview.html
http://tomcat.apache.org/index.html
http://tomcat.apache.org/index.html
http://www.apache.org/licenses/LICENSE-2.0
http://java.sun.com/products/servlets
http://java.sun.com/products/servlets
http://java.sun.com/products/jsp
http://caucho.com/

SIMPROCESS and Dispatcher

15

Sun Java System
Application Server

Application
Server

N/A Purchased support available

JBoss Application
Server

Application
Server

LGPL J2EE 1.4 certified; bundles Tomcat to provide Servlet and JSP
support

There are many others available, including commercial products. For additional
information and possible links to other resources which can help in choosing a suitable
product, visit TheServerSide Application Server Matrix. This site has a longer list of
products along with links to reviews, vendor web sites, and more.

Once a product is installed and configured, you will need to take product-specific actions
to deploy the Dispatcher-jaxrpc.war and dispatcherservice.properties files. Tomcat
includes a “Manager Application” that can be used to stop, start, deploy or undeploy Web
services and applications, including uploading WAR files for deployment. The Tomcat
documentation also designates the location of “resources” needed by a service or
application which aren’t already built into it. The dispatcherservice.properties file is
such a resource and must be placed in the <Tomcat-installDir>/shared/classes directory
in order to be found by the DispatcherService when it initially loads. Similar information
will be documented for the selected Web Container or Application Server.

6.4 DispatcherService Operations
Precise details on the use of the DispatcherService to obtain SIMPROCESS services will
depend on numerous factors, including the Web Container or Application Server chosen
for its deployment and the nature of the client application. Client applications might take
the form of JavaServer Pages (JSPs). They could be Web services themselves. Or, they
might be standalone programs written in any of a variety of programming languages.
That’s a key reason that the WSDL file, describing the DispatcherService in a way that is
meaningful to application developers and their tools, is included among the installed files.

Equally important is an understanding of how the available operations might be applied
to get the benefits of using SIMPROCESS simulation services on demand. So before
listing the available operations, let’s first look at some scenarios outlining how they
might be used to satisfy the needs of a client application.

6.4.1 DispatcherService Usage Scenarios
A list of available operations will be more meaningful if they can be understood as a set
of actions needed to satisfy a business requirement. The scenarios that follow describe
some situations in which simulation services are important to a business process and
show how SIMPROCESS can be used on demand to can satisfy that need. Each will
generically present a situation, followed by a series of steps which can be taken to obtain
SIMPROCESS or OptQuest for SIMPROCESS services via DispatcherService. Each
step will provide the name in italics of one or more operations which will be described in
greater detail in the next section listing available operations. These scenarios leave out
the handling of error conditions, which would be essential activities in a client
application. Note that the steps for starting and handling a SIMPROCESS instance are
different from the steps for starting and handling an OptQuest for SIMPROCESS
optimizer.

http://wwws.sun.com/software/products/appsrvr_pe/
http://wwws.sun.com/software/products/appsrvr_pe/
http://www.jboss.org/products/jbossas
http://www.jboss.org/products/jbossas
http://www.theserverside.com/reviews/matrix.tss

SIMPROCESS and Dispatcher

16

6.4.1.1 Scenario 1
A client application which monitors ongoing activities in a business process needs to
respond to certain infrequent events by simulating a model using SIMPROCESS. The
operations called on by the client application might be:

 Request the start of a SIMPROCESS instance, optionally providing a positive
timeout (startInstance)

 Ask the instance to open a model (openModel)
 Ask the instance to set some parameters in the model (setModelParameters)
 Ask the instance to begin simulating the model (startSimulation)
 Check periodically until the simulation is complete (isSimulationComplete or

getSimulationStatus)
 Optionally close the model (closeModel)
 Stop the instance (which will close any open models), or allow the timeout to

expire if it is reasonably short, to free the license (stopInstance)

6.4.1.2 Scenario 2
At specific timed intervals, an application needs to simulate a model and provide results
to users. The operations called on by the client application might be:

 Request the start of a SIMPROCESS instance (startInstance)
 Set the timeout on the instance to the maximum allowable value, so that the

license is not released to other client applications (getMaxTimeout, setTimeout)
 Ask the instance to open a model (openModel)
 Ask the instance to set some parameters in the model (setModelParameters)
 Ask the instance to begin simulating the model (startSimulation)
 Check periodically until the simulation is complete (isSimulationComplete or

getSimulationStatus)
 Repeatedly set parameters, simulate the model, and check status as needed based

on some business rules in the client application (setModelParameters,
startSimulation, isSimulationComplete or getSimulationStatus)

 At application shutdown, stop the instance (which will close any open models)
and free the license (stopInstance)

6.4.1.3 Scenario 3
An interactive, Web-based client application needs to pass some of the user-entered data
to a model to use as parameters and simulate. Once simulation completes, it needs to
report to users the results of the simulation when available, after which they may elect to
modify their entries and repeat the simulation process. Once the user has entered all
client-edited information, the operations called on by the client application might be:

 Request the start of a SIMPROCESS instance (startInstance)
 Ask the instance to open a model (openModel)
 Ask the instance to set some parameters in the model, using data entered by the

user (setModelParameters)
 Ask the instance to begin simulating the model (startSimulation)
 Check periodically until the simulation is complete (isSimulationComplete or

getSimulationStatus)

SIMPROCESS and Dispatcher

17

 Stop the instance (which will close any open models) and free the license
(stopInstance)

6.4.1.4 Scenario 4
At certain times a SIMPROCESS model needs to be run to determine optimal results for
users:

 Request the start of an OptQuest for SIMPROCESS optimizer (startOptimizer)
 If there is more than one optimization defined in the model, or none is designated

as the active one, select the optimization definition to use (setOptimization)
 If necessary, modify the optimization definition (setDecisionVariable,

setConstraint, setMaxIterations, setReplications, setAutoStop, setPrecision)
 Ask the optimizer to begin the optimization (optimize)
 Check periodically until the optimization is complete (isOptimizationComplete)
 Retrieve optimization results (various methods in 6.4.2)
 Stop the optimizer and free the license (stopOptimizer)

Clearly, many scenarios will take very similar steps to satisfy their requirements. The
powerful features of SIMPROCESS allow tremendous flexibility in reading and writing
databases or taking other actions which facilitate information exchange between the
model being simulated and the client. In the next section, you’ll find a list of all the
operations offered by DispatcherService to implement these actions, as well as proper
error handling, so that a client can take advantage of the full power of SIMPROCESS
simulation services at need.

6.4.2 Available DispatcherService Operations
Because the DispatcherService was developed in Java using the JAX-RPC and JAXP
technologies, the simplest way to describe the available operations is as Java methods.
The paragraphs which follow will show each available operation as a Java method, along
with a brief description of its purpose and resulting error settings for the service and any
affected SIMPROCESS instance or OptQuest for SIMPROCESS optimizer. Those
needing to know greater levels of technical detail (concerning SOAP message formats,
encoding style, operation style, etc.) should refer to the WSDL file.

6.4.2.1 Say Hello

Method public String sayHello()
Description Ask DispatcherService to say hello
Error settings
after call

Service: NOERR (List of errors is in Appendix A)
Instance: N/A

Special
Conditions

None

Usage Comments Mainly useful as a test of successful communication,
returns the literal string "Hello from the
DispatcherService"

SIMPROCESS and Dispatcher

18

6.4.2.2 Check for Error

Method public boolean error()
Description Determine if DispatcherService error occurred
Error settings
after call

Service: Not changed
Instance: N/A

Special
Conditions

None

Usage Comments Call after most operations to determine if a non-zero
error (any error other than NOERR) exists in
DispatcherService’s error manager.

6.4.2.3 Last Error Number

Method public int lastError()
Description Get DispatcherService’s last error number
Error settings
after call

Service: Not changed
Instance: N/A

Special
Conditions

None

Usage Comments Call after most operations to obtain the current error
number value from DispatcherService’s error manager.

6.4.2.4 Get Error Message

Method public String getErrorMessage(int error)
Description Retrieves the text corresponding to the error number

provided.
Error settings
after call

Service: Not changed
Instance: N/A

Special
Conditions

See the list of errors in Appendix A. If the value
provided is outside the range of valid error numbers, the
returned string will contain "Invalid error number."

Usage Comments Call at any time to obtain the text string describing a
particular error number.

6.4.2.5 Get Detail Error Message

Method public String getDetailErrorMessage()
Description Retrieves the text of the Detail Error Message set by the

most recent operation. This operation will return the
string set by the most recently called service operation;
if none was set, it returns null.

Error settings
after call

Service: Not changed
Instance: N/A

SIMPROCESS and Dispatcher

19

Special
Conditions

None.

Usage Comments Call after determining that an error at the service has
occurred to see if a more detailed description of the
problem is available.

6.4.2.6 Get Exception Message

Method public String getExceptionMessage()
Description Retrieves the Exception message text, if one occurred

during the most recent operation, or a null value.
Error settings
after call

Service: Not changed
Instance: N/A

Special
Conditions

None.

Usage Comments Call after determining that an error at the service has
occurred to see if an exception resulted and get more
detailed information.

6.4.2.7 Check for Instance or Optimizer Error

Method public boolean instanceError(String token)
Description Determine if an error occurred in the most recent

command sent to the SIMPROCESS instance or
optimizer identified by the unique token.

Error settings
after call

Service: Set to UNKNOWN_INSTANCE if the token is
unknown; otherwise NOERR.
Instance: Not changed

Special
Conditions

This call does not get passed to the specified instance
or optimizer, and therefore does not delay its timeout.

Usage Comments Call after most instance or optimizer operations to
determine if a non-zero error (any error other than
NOERR) exists in the instance’s or optimizer’s error
manager. Any time this call returns true, first confirm
that the service’s error number is NOERR and then
check the instance’s or optimizer’s value.

6.4.2.8 Last Instance or Optimizer Error Number

Method public int lastInstanceError(String token)
Description Get last error number for the SIMPROCESS instance or

optimizer identified by the unique token.
Error settings
after call

Service: Changed to UNKNOWN_INSTANCE if the
token is unknown; otherwise NOERR.
Instance: Not changed

SIMPROCESS and Dispatcher

20

Special
Conditions

This call does not get passed to the specified instance
or optimizer, and therefore does not delay its timeout.

Usage Comments Call after most instance or optimizer operations to
obtain the current error number value from an
instance’s or optimizer’s error manager. An invalid
token returns UNKNOWN_INSTANCE.

6.4.2.9 Get Instance or Optimizer Error Message

Method public String getInstanceErrorMessage(String token)
Description Retrieves the text corresponding to the current error

number of the instance or optimizer identified by the
unique token.

Error settings
after call

Service: UNKNOWN_INSTANCE if token is
unknown; otherwise unchanged.
Instance: Not changed

Special
Conditions

See the list of errors in Appendix A. This call does not
get passed to the specified instance or optimizer, and
therefore does not delay its timeout.

Usage Comments Call to get the text corresponding to the instance’s or
optimizer’s current error number. Will return null if the
token does not refer to a known instance or optimizer.

6.4.2.10 Get Detail Instance or Optimizer Error Message

Method public String getDetailInstanceErrorMessage(String
token)

Description Retrieves the text of the Detail Error Message set by the
most recent operation of the instance or optimizer. This
operation will return the string set by the most recent
operation; if none was set, it returns null.

Error settings
after call

Service: Set to UNKNOWN_INSTANCE if token not
known; otherwise not changed.
Instance: Not changed

Special
Conditions

This call does not get passed to the specified instance
or optimizer, and therefore does not delay its timeout.

Usage Comments Call after determining that an error occurred in most
recent operation of the instance or optimizer referred to
by token; null will result if the service does not know
the token or if no value has been set by the instance or
optimizer.

SIMPROCESS and Dispatcher

21

6.4.2.11 Get Instance or Optimizer Exception Message

Method public String getInstanceExceptionMessage(String
token)

Description Retrieves the Exception message text, if one occurred
during the most recent operation of the instance or
optimizer identified by the unique token, or a null value
if none occurred.

Error settings
after call

Service: UNKNOWN_INSTANCE if the token is
unknown; otherwise not changed.
Instance: Not changed

Special
Conditions

This call does not get passed to the specified instance
or optimizer, and therefore does not delay its timeout.

Usage Comments Call after determining that an error occurred during the
most recent instance or optimizer operation. If a null is
returned, verify service did not set
UNKNOWN_INSTANCE.

6.4.2.12 Get Default Instance or Optimizer Timeout

Method public int getDefaultTimeout()
Description Retrieves the length of time in minutes used as the

default timeout value for new instances or optimizers.
Error settings
after call

Service: None
Instance: None

Special
Conditions

None.

Usage Comments This corresponds to the instance.timeout.default
property of the dispatcherservice.properties file.

6.4.2.13 Get Maximum Instance or Optimizer Timeout

Method public int getMaxTimeout()
Description Retrieves the length of time in minutes which is the

largest timeout value allowed for any instance or
optimizer. This value will be used any time a timeout
value is set which exceeds it.

Error settings
after call

Service: None
Instance: None

Special
Conditions

None.

Usage Comments Corresponds to the value in the instance.timeout.max
property of the dispatcherservice.properties file.

SIMPROCESS and Dispatcher

22

6.4.2.14 Get Instance or Optimizer Timeout

Method public int getTimeout(String token)
Description Retrieves the timeout setting of the SIMPROCESS

instance or optimizer identified by the unique token, or
a -1 if any error occurs.

Error settings
after call

Service: UNKNOWN_INSTANCE if the token is
unknown; otherwise unchanged.
Instance: No change

Special
Conditions

This call does not get passed to the specified instance
or optimizer, and does not delay its timeout.

Usage Comments

6.4.2.15 Set Instance or Optimizer Timeout

Method public boolean setTimeout(String token, int
newTimeout)

Description Sets the timeout period of the SIMPROCESS instance
or optimizer identified by the unique token to the
number of minutes specified in newTimeout.

Error settings
after call

Service: UNKNOWN_INSTANCE if the token is
unknown; otherwise unchanged.
Instance: NOERR

Special
Conditions

This call restarts the timeout countdown.

Usage Comments If the value of newTimeout is less than zero, the default
timeout is used. If larger than the maximum timeout
allowed, that value is used. Returns false only if the
token is unknown.

6.4.2.16 Start SIMPROCESS Instance

Method public String startInstance(int timeout)
Description Requests launch of a SIMPROCESS instance with the

specified timeout duration; returns a unique token
referring to that instance or null if unable to start one.

Error settings
after call

Service:
CANNOT_CREATE_TOKEN if unable to obtain a
unique token
NO_AVAILABLE_DISPATCHERS if there is no
Dispatcher able to handle the request
One of several possible error settings if all available
Dispatchers are unable to start an instance

Instance: NOERR

SIMPROCESS and Dispatcher

23

Special
Conditions

This call restarts the instance’s timeout countdown.

Usage Comments If the value of timeout is less than zero, the default
timeout is used. If larger than the maximum timeout
allowed, that value is used. Timeout countdown begins
on successful start.

6.4.2.17 Stop SIMPROCESS Instance

Method public boolean stopInstance(String token)
Description Requests shutdown of the SIMPROCESS instance

identified by the unique token.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted
One of several possible errors returned from the owning
Dispatcher if the instance could not stop, including
MODEL_RUNNING if instance is currently simulating
Instance: Not changed

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments A false response not accompanied by an error setting of
MODEL_RUNNING should probably be followed by a
forced shutdown request.

6.4.2.18 Have SIMPROCESS Instance Say Hello

Method public String instanceHello(String token)
Description Ask the SIMPROCESS instance identified by the

unique token to “say hello” to confirm communication.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance: One of several possible errors returned from
the instance

Special
Conditions

Restarts the instance’s timeout countdown.

SIMPROCESS and Dispatcher

24

Usage Comments This operation may be useful as a means of restarting an
instance’s timeout countdown or merely to confirm the
validity of a token. It will result in a null response if
any error condition occurs.

6.4.2.19 Open SIMPROCESS Model File

Method public boolean openModel(String token, String model)
Description Ask the SIMPROCESS instance identified by the

unique token to open the named model file. The value
of the model parameter must correspond to a model file
in the SIMPROCESS installation’s models directory on
the system where the instance is running; it is case
sensitive and must not include the “.spm” extension.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance: MODEL_NOT_FOUND if the named model
file is not present in the models directory (after adding
the extension “.spm”), or other error as appropriate.

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments This operation may be useful as a means of restarting an
instance’s timeout countdown or merely to confirm the
validity of a token. It will result in a null response if
any error condition occurs.

6.4.2.20 List Open SIMPROCESS Models

Method public String[] listOpenModels(String token)
Description Get a list of open models from the instance identified by

the unique token. The result will be null if an error
occurs, or an array of strings with zero or more entries
for the names of all open models.

SIMPROCESS and Dispatcher

25

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance: NO_ACTOR if an internal configuration error
has occurred, or other error as appropriate.

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments If a null response occurs, check the service error setting
first, then the instance setting.

6.4.2.21 Close SIMPROCESS Model

Method public boolean closeModel(String token, String model)
Description Ask the instance identified by the unique token to close

the specified model file.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance:
MODEL_ALREADY_RUNNING if specified model
currently simulating
MODEL_NOT_OPEN if named model is not open
Other error if appropriate

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments Closing a model is not required prior to shutting down
an instance.

6.4.2.22 Set Model Parameters

Method public boolean setModelParameters(String token, String
model, String[] params)

SIMPROCESS and Dispatcher

26

Description Set parameters of the named model in the instance
identified by the unique token.

Valid array contents are the same as what is described
when using a properties file in Appendix J of the
SIMPROCESS User’s Manual under the heading
Available Options. However, the automatic commit to
a database does not occur when Design and Scenario
values are set. That behavior is applicable only to the
traditional single-user environment of SIMPROCESS.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance:
MODEL_ALREADY_RUNNING if specified model
currently simulating
MODEL_NOT_OPEN if named model is not open
PARAMETER_ERROR if the parameter array is null
or another error results from invalid or incorrect
contents of “param”
Other error if appropriate

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments This operation is useful not only for setting the initial
values of Attributes designated as Model Parameters,
but also for selecting which alternative sub-process to
make the active one for any Processes which have
multiples (the currently set one will be used if not
specified). If a false response results, check the
service’s error setting first and then the instance’s.

6.4.2.23 Start Simulation

Method public boolean startSimulation(String token, String
model)

Description Start simulation of the named model in the instance
identified by the unique token.

SIMPROCESS and Dispatcher

27

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance:
MODEL_ALREADY_RUNNING if specified model is
already simulating
MODEL_NOT_OPEN if named model is not open
MODEL_ RUNNING if another model is already
simulating (an instance may only simulate one model at
any time)
INITIALIZATION_ERROR if an error occurred during
simulation initialization, such as expression errors
Other error if appropriate

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments This operation starts the simulation process for a model.
Once simulation begins, the instance will not honor
requests to shut down until it has completed, whether
normally, on request, or by error. If a false result
occurs, check the service’s error and then the instance’s.

6.4.2.24 Stop Simulation

Method public boolean stopSimulation(String token, String
modelName)

Description Stop simulation of the named model in the instance
identified by the unique token.

SIMPROCESS and Dispatcher

28

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance:
MODEL_NOT_OPEN if named model is not open
MODEL_ NOT_RUNNING if named model is not
simulating
SIMULATION_STOP_FAILURE if an error caused
the instance to be unable to stop the simulation (the
instance will wait a maximum of 15 seconds for
successful termination; a forced instance shutdown may
then be the only means of terminating the simulation if
this error occurs)
Other error if appropriate

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments This operation stops the simulation process for a model.
Once simulation stops, the instance will still honor
requests for information on the simulation status until
the model is closed. When a false result occurs, check
the service’s error and then the instance’s error.

6.4.2.25 Force SIMPROCESS Instance Shutdown

Method public boolean forceInstanceDown(String token)
Description Forcefully shut down the instance identified by the

unique token.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted
Other error if appropriate

Instance: N/A

Special
Conditions

SIMPROCESS and Dispatcher

29

Usage Comments This operation instructs the owning Dispatcher to
terminate an instance without regard to any ongoing
operations, such as opening or simulating a model.
Depending on numerous conditions, such operations
can be lengthy, and this operation should not be used
lightly. In the event of a false reply when it is certain
that no failure of the DispatcherService, RegistryServer
or Dispatcher has occurred, it may be necessary to have
a system administrator determine whether a process is
in need of special action to terminate.

6.4.2.26 Is Simulation Complete?

Method public boolean isSimulationComplete(String token,
String modelName)

Description Inquire whether simulation of the named model in the
instance identified by the unique token has completed
(normally or otherwise).

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance:
MODEL_NOT_OPEN if named model is not open
MODEL_ NOT_SIMULATED if named model has not
simulated since opening
Other error if appropriate

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments A simulation should be considered complete only when
a true reply is received along with both the service and
instance error settings of NOERR. This does not
indicate a normal completion, however, only that the
simulation has been completed. Additional simulation
status should be checked to determine if completion
was normal.

6.4.2.27 Get Replication Number

Method public int getReplication(String token, String
modelName)

SIMPROCESS and Dispatcher

30

Description Get the current replication number for the simulation of
the named model in the instance identified by the
unique token. A value of -1 will indicate an error; see
below.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance:
MODEL_NOT_OPEN if named model is not open
MODEL_ NOT_SIMULATED if named model has not
simulated since opening
Other error if appropriate

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments

6.4.2.28 Get Simulation Time

Method public double getSimTime(String token, String
modelName)

Description Get the current simulation time for the simulation of the
named model in the instance identified by the unique
token. A negative value will indicate an error; see
below.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance:
MODEL_NOT_OPEN if named model is not open
MODEL_ NOT_SIMULATED if named model has not
simulated since opening
Other error if appropriate

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments The unit of measure will be that which was set in the
model being simulated. Once simulation is complete,
this call will continue to return the final simulation
time.

SIMPROCESS and Dispatcher

31

6.4.2.29 Get Simulation Status

Method public SimulationStatus getSimulationStatus(String
token, String modelName)

Description Retrieves a SimulationStatus object with information
about the simulation of the named model in the instance
identified by the unique token. See Appendix B for a
Java source listing of SimulationStatus.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Instance:
MODEL_NOT_OPEN if named model is not open
MODEL_ NOT_SIMULATED if named model has not
simulated since opening
Other error if appropriate

Special
Conditions

Restarts the instance’s timeout countdown.

Usage Comments SimulationStatus consolidates bits of information which
are not otherwise available via DispatcherService into a
single location, making it a convenient way of gathering
them in one call.

6.4.2.30 Start Optimizer

Method public String startOptimizer(String model, int timeout)
Description Requests launch of a SIMPROCESS optimizer with the

specified timeout duration; returns a unique token
referring to that instance or null if unable to start one.
The value of the model parameter must correspond to a
model file in the SIMPROCESS installation’s models
directory on the system where the optimizer is running;
it is case sensitive and must not include the “.spm”
extension.

SIMPROCESS and Dispatcher

32

Error settings
after call

Service:
CANNOT_CREATE_TOKEN if unable to obtain a
unique token
NO_AVAILABLE_DISPATCHERS if there are no
Dispatchers to handle the request
One of several possible error settings if all available
Dispatchers are unable to start an instance

Optimizer: NOERR

Special
Conditions

This call restarts the optimizer’s timeout countdown.

Usage Comments If the value of timeout is less than zero, the default
timeout is used. If larger than the maximum timeout
allowed, that value is used. Timeout countdown begins
on successful start.

6.4.2.31 Stop SIMPROCESS Optimizer

Method public boolean stopOptimizer(String token)
Description Requests shutdown of the SIMPROCESS optimizer

identified by the unique token.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted
One of several possible errors returned from the owning
Dispatcher if the instance could not stop, including
OPTIMIZATION_RUNNING if optimizer is currently
optimizing
Optimizer: Not changed

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments A false response not accompanied by an error setting of
OPTIMIZATION_RUNNING should probably be
followed by a forced shutdown request.

6.4.2.32 Have SIMPROCESS Optimizer Say Hello

Method public String optimizerHello(String token)
Description Ask the SIMPROCESS optimizer identified by the

unique token to “say hello” to confirm communication.

SIMPROCESS and Dispatcher

33

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the optimizer
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer: One of several possible errors returned from
the optimizer

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments This operation may be useful as a means of restarting an
optimizer’s timeout countdown or merely to confirm
the validity of a token. It will result in a null response
if any error condition occurs.

6.4.2.33 Force SIMPROCESS Optimizer Shutdown

Method public boolean forceOptimizerDown(String token)
Description Forcefully shut down the optimizer identified by the

unique token.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted
Other error if appropriate

Optimizer: N/A

Special
Conditions

None.

Usage Comments This operation instructs the owning Dispatcher to
terminate an optimizer without regard to any ongoing
operations, such as a running optimization. Depending
on numerous conditions, such operations can be
lengthy, and this operation should not be used lightly.
In the event of a false reply when it is certain that no
failure of the DispatcherService, RegistryServer or
Dispatcher has occurred, it may be necessary to have a
system administrator determine whether a process is in
need of special action to terminate.

6.4.2.34 Set Optimization

Method public boolean setOptimization(String token, String
optName)

SIMPROCESS and Dispatcher

34

Description Sets the active optimization of the SIMPROCESS
optimizer identified by the unique token. The
optimization definition referred to by optName (which
is case sensitive) must already exist in the specified in
startOptimizer.

Error settings
after call

Service: UNKNOWN_INSTANCE if the token is
unknown; otherwise unchanged.
Optimizer:
OPTIMIZATION_RUNNING if the optimization is
already running
OPTIMIZATION_NOT_FOUND if the requested
optimization definition (optName) is not in the loaded
model
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments None.

6.4.2.35 Set Decision Variable

Method public boolean setDecisionVariable(String token, String
dvName, String[] params)

Description Sets the parameters of the named decision variable in
the optimizer identified by the unique token.

The dvName must be the fully qualified name of a
SIMPROCESS Model Parameter (e.g.,
Model.NumResource1).

Valid parameters are LowerBound, UpperBound,
StartingValue and StepSize. Valid array contents are
the parameter followed by an “=” and then the value.
For example, LowerBound=5 would be a valid
parameter. Note that there are no spaces on either side
of the equals sign.

SIMPROCESS and Dispatcher

35

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_RUNNING if the optimization is
already running
DECISION_VARIABLE_ERROR if the parameter
array is null or another error results from invalid or
incorrect contents of “param”
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Only one decision variable can be set at a time.

6.4.2.36 Set Constraint

Method public boolean setConstraint(String token, String
conName, String[] params)

Description Sets the parameters of the named constraint in the
optimizer identified by the unique token.

The conName must be the fully qualified name of the
constraint (e.g., TotalWait:Value).

Valid parameters are LowerBound and UpperBound.
Valid array contents are the parameter followed by an
“=” and then the value. For example, a valid parameter
would be LowerBound=5. Note that there are no
spaces on either side of the equals sign.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_RUNNING if the optimization is
already running
CONSTRAINT_ERROR if the parameter array is null
or another error results from invalid or incorrect
contents of “param”
Other error if appropriate

SIMPROCESS and Dispatcher

36

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Only one constraint can be set at a time. Also,
Expression Constraints cannot be set through the
Dispatcher.

6.4.2.37 Set Maximum Iterations

Method public boolean setMaxIterations(String token, int iter)
Description Sets the maximum number of iterations for the

optimizer identified by the unique token.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_RUNNING if the optimization is
already running
MAX_ITERATION_ERROR if an error results from
invalid or incorrect value of iter
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Maximum iterations must be a positive integer.

6.4.2.38 Set Replications

Method public boolean setReplications(String token, int reps)
Description Sets the number of simulation replications per iteration

for the optimizer identified by the unique token.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_RUNNING if the optimization is
already running
REPLICATION_ERROR if an error results from
invalid or incorrect value of reps
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

SIMPROCESS and Dispatcher

37

Usage Comments The number of replications must be a positive integer.

6.4.2.39 Set Auto Stop

Method public boolean setAutoStop(String token, boolean stop)
Description Sets whether Auto Stop is on or off for the optimizer

identified by the unique token.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_RUNNING if the optimization is
already running
AUTO_STOP_ERROR if an error results from invalid
or incorrect value of stop
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments None.

6.4.2.40 Set Precision

Method public boolean setPrecision(String token, double
precision)

Description Sets the Auto Stop precision for determining when two
objective values are equal for the optimizer identified
by the unique token.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_RUNNING if the optimization is
already running
PRECISION_ERROR if an error results from invalid or
incorrect contents of precision
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Precision must be non-negative.

SIMPROCESS and Dispatcher

38

6.4.2.41 Is Optimization Complete

Method public boolean isOptimizationComplete(String token)
Description Inquire whether the optimization in the optimizer

identified by the unique token has completed (normally
or otherwise).

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer: Possible OptQuest errors

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments An optimization should be considered complete only
when a true reply is received along with both the
service and optimizer error settings of NOERR. This
does not indicate a normal completion, however, only
that the optimization has been completed. Additional
optimization status should be checked to determine if
completion was normal.

6.4.2.42 Is Current Iteration Feasible

Method public boolean isCurrentFeasible(String token)
Description Inquire whether the current iteration is feasible.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_NOT_RUNNING if the optimization
has not started or is already complete
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any iteration should be considered feasible only when a
true reply is received along with both service and
optimizer error settings of NOERR.

6.4.2.43 Is Best Iteration Feasible

Method public boolean isBestFeasible(String token)

SIMPROCESS and Dispatcher

39

Description Inquire whether the best iteration is feasible.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer: Possible OptQuest errors

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any iteration should be considered feasible only when a
true reply is received along with both service and
optimizer error settings of NOERR.

6.4.2.44 Get Current Iteration Number

Method public int getCurrentIteration(String token)
Description Get the current iteration number for the optimization of

the optimizer identified by the unique token. A value of
-1 will indicate an error; see below.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_NOT_RUNNING if the optimization
has not started or is already complete
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments None.

6.4.2.45 Get Best Iteration Number

Method public int getBestIteration(String token)
Description Get the best iteration number for the optimization of the

optimizer identified by the unique token. A value of -1
will indicate an error; see below.

SIMPROCESS and Dispatcher

40

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer: Possible OptQuest errors

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments None.

6.4.2.46 Get Current Objective Value

Method public double getCurrentObjectiveValue(String token)
Description Get the current objective value for the optimization of

the optimizer identified by the unique token.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_NOT_RUNNING if the optimization
has not started or is already complete
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

6.4.2.47 Get Best Objective Value

Method public double getBestObjectiveValue(String token)
Description Get the best objective value for the optimization of the

optimizer identified by the unique token.
Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer: Possible OptQuest errors

SIMPROCESS and Dispatcher

41

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

6.4.2.48 Get Current Decision Variable Value

Method public double getDVCurrentValue(String token, String
dvName)

Description Get the current value for the named decision variable of
the optimizer identified by the unique token.

The dvName must be the fully qualified name of the
SIMPROCESS Model Parameter (e.g.,
Model.NumResource1).

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_NOT_RUNNING if the optimization
has not started or is already complete
DECISION_VARIABLE_ERROR if the requested
decision variable is not found or another error results
from invalid or incorrect contents of dvName
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

6.4.2.49 Get Best Decision Variable Value

Method public double getDVBestValue(String token, String
dvName)

Description Get the best value for the named decision variable of
the optimizer identified by the unique token.

The dvName must be the fully qualified name of the
SIMPROCESS Model Parameter (e.g.,
Model.NumResource1).

SIMPROCESS and Dispatcher

42

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
DECISION_VARIABLE_ERROR if the requested
decision variable is not found or another error results
from invalid or incorrect contents of dvName
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

6.4.2.50 Get Current Constraint Value

Method public double getConstraintCurrentValue(String token,
String conName)

Description Get the current value for the named constraint of the
optimizer identified by the unique token.

The conName must be the fully qualified name of the
constraint (e.g., TotalWait:Value).

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_NOT_RUNNING if the optimization
has not started or is already complete
CONSTRAINT_ERROR if the requested constraint is
not found or another error results from invalid or
incorrect contents of conName
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

SIMPROCESS and Dispatcher

43

6.4.2.51 Get Best Constraint Value

Method public double getConstraintBestValue(String token,
String conName)

Description Get the best value for the named constraint of the
optimizer identified by the unique token.

The conName must be the fully qualified name of the
constraint (e.g., TotalWait:Value).

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
CONSTRAINT_ERROR if the requested constraint is
not found or another error results from invalid or
incorrect contents of conName
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

6.4.2.52 Get Expression Constraint Current Left Hand Side

Method public double getExpConstraintCurrentLHS(String
token, String conName)

Description Get the current iteration’s value for the Left Hand Side
(LHS) for the named expression constraint of the
optimizer identified by the unique token.

The conName must be the assigned name of the
constraint (e.g., “My Exp Constraint”).

SIMPROCESS and Dispatcher

44

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_NOT_RUNNING if the optimization
has not started or is already complete
EXP_CONSTRAINT_ERROR if the requested
expression constraint is not found or another error
results from invalid or incorrect contents of conName
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

6.4.2.53 Get Current Expression Constraint Right Hand Side

Method public double getExpConstraintCurrentRHS(String
token, String conName)

Description Get the value of the current iteration’s Right Hand Side
(RHS) for the named expression constraint of the
optimizer identified by the unique token.

The conName must be the assigned name of the
constraint (e.g., “My Exp Constraint”).

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_NOT_RUNNING if the optimization
has not started or is already complete
EXP_CONSTRAINT_ERROR if the requested
expression constraint is not found or another error
results from invalid or incorrect contents of conName
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

SIMPROCESS and Dispatcher

45

6.4.2.54 Get Best Expression Constraint Left Hand Side

Method public double getExpConstraintBestLHS(String token,
String conName)

Description Get the best Left Hand Side (LHS) value for the named
expression constraint of the optimizer identified by the
unique token.

The conName must be the assigned name of the
constraint (e.g., “My Exp Constraint”).

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
EXP_CONSTRAINT_ERROR if the requested
expression constraint is not found or another error
results from invalid or incorrect contents of conName
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

6.4.2.55 Get Best Expression Constraint Right Hand Side

Method public double getExpConstraintBestRHS(String token,
String conName)

Description Get the best Right Hand Side (RHS) value for the
named expression constraint of the optimizer identified
by the unique token.

The conName must be the assigned name of the
constraint (e.g., “My Exp Constraint”).

SIMPROCESS and Dispatcher

46

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
EXP_CONSTRAINT_ERROR if the requested
expression constraint is not found or another error
results from invalid or incorrect contents of conName
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments Any returned value should be accepted only after
checking error conditions.

6.4.2.56 Get Termination Reason

Method public String getTerminationReason(String token)
Description Gets the reason for termination of the optimization

running in the optimizer identified by the unique token.
A null value indicates an error.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer:
OPTIMIZATION_RUNNING if the optimization is
still running
Other error if appropriate

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments None.

6.4.2.57 Get Decision Variable Names

Method public String[] getDecisionVariableNames(String
token)

Description Gets an array containing the names of the decision
variables in the optimizer identified by the unique
token. A null value indicates an error. See below.

SIMPROCESS and Dispatcher

47

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer: NOERR

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments A null value indicates an error because an optimization
must have at least one decision variable.

6.4.2.58 Get Constraint Names

Method public String[] getConstraintNames(String token)
Description Gets an array containing the names of the constraints in

the optimizer identified by the unique token. A null
value indicates an error. An array of zero length
indicates that no constraints were defined.

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer: NOERR

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments None.

6.4.2.59 Get Expression Constraint Names

Method public String[] getExpressionConstraintNames(String
token)

Description Gets an array containing the names of the expression
constraints in the optimizer identified by the unique
token. A null value indicates an error. An array of zero
length indicates that no expression constraints were
defined.

SIMPROCESS and Dispatcher

48

Error settings
after call

Service:
UNKNOWN_INSTANCE if the token is unknown
INSTANCE_BUSY if another operation is currently
being performed by the instance
DISPATCHER_UNAVAILABLE if the owning
Dispatcher cannot be contacted

Optimizer: NOERR

Special
Conditions

Restarts the optimizer’s timeout countdown.

Usage Comments None.

7 Client Applications
DispatcherService was developed entirely in Java using Sun’s JAX-RPC and JAXP
technologies. As a result, all messages sent to or received from DispatcherService, once
it is deployed as a Web service, will be SOAP XML messages. That means the resulting
service can be called upon by a client application written in any language and running on
any platform, provided it is able to send and receive messages to a Web service using
SOAP protocols. One common example might include Java Server Pages (JSPs), which
could run in the same Web Container as the DispatcherService itself. The testing done
during development used Java clients of varying sophistication. And the new SOAPCall
expression statement in SIMPROCESS itself was exercised against some of the services
provided via the DispatcherService.

Appendix A

Error Numbers and Descriptions

Error Constant Error
Number Error String

NOERR 0 No error
UNKNOWN_ERROR 1 An unknown error has occurred; see

detail information.
BAD_CONTEXT 2 Null Context; registry may be

unavailable and service should be
restarted.

NO_LICENSE_AVAILABLE 3 Unable to obtain a license for a new
SIMPROCESS instance or
optimizer.

LAUNCH_FAILED 4 Launch of SIMPROCESS instance
failed; see detail information.

INSTANCE_LIST_FAILURE 5 An error occurred retrieving the
instance and optimizer list.

UNAUTHORIZED_DISPATCHER 6 Unauthorized DispatcherServer
requesting instance or optimizer
shutdown; ignored.

UNKNOWN_INSTANCE 7 Instance or optimizer for specified
token not found.

LOOKUP_FAILURE 8 DispatcherRegistry lookup error.
UNBIND_FAILURE 9 DispatcherRegistry unbind error;

unbind may not have been
successful.

REGISTRY_UNAVAILABLE 10 RegistryServer unavailable.
DISPATCHER_UNAVAILABLE 11 Named DispatcherServer

unavailable.
LIST_UNAVAILABLE 12 Requested list unavailable; possible

service error.
NO_ACTOR 13 Instance or optimizer has not

provided Actor for callback.
FILE_ERROR 14 An I/O error has occurred on a file

operation.
FILE_NOT_FOUND 15 Specified model file not found.
MODEL_RUNNING 16 A model is currently simulating.
MODEL_ALREADY_OPEN 17 Requested model file is already

open.
MODEL_ALREADY_RUNNING 18 Requested model is currently

simulating.
MODEL_OPEN_FAILED 19 An error occurred opening the

requested model file; it may be
damaged.

MODEL_NOT_OPEN 20 Requested model is not open.
MODEL_NOT_RUNNING 21 Requested model is not simulating.

Error Constant Error
Number Error String

PARAMETER_ERROR 22 Error setting model parameters; see
detail information.

INITIALIZATION_ERROR 23 Error during simulation
initialization; see detail
information.

SIMULATION_STOP_FAILURE 24 Unable to stop simulation; see
detail information.

NO_AVAILABLE_DISPATCHERS 25 There are no available Dispatchers.
CANNOT_CREATE_TOKEN 26 Unable to create unique instance or

optimizer ownership token.
MODEL_NOT_SIMULATED 27 Requested model has not run a

simulation.
INSTANCE_BUSY 28 Instance or optimizer busy

executing another command.
OPTIMIZATION_RUNNING 29 Unable to process request.

Optimization already running.
OPTIMIZATION_ERROR 30 Error in optimization; see output

logs.
OPTIMIZATION_NOT_RUNNING 31 Unable to process request.

Optimization is not running.
DECISION_VARIABLE_ERROR 32 Decision variable error.
OPTIMIZATION_NOT_FOUND 33 Requested optimization not found.
CONSTRAINT_ERROR 34 Constraint error.
MAX_ITERATION_ERROR 35 Error setting maximum number of

iterations.
REPLICATION_ERROR 36 Error setting number of replications

per iteration.
AUTO_STOP_ERROR 37 Error setting auto stop for

optimization.
PRECISION_ERROR 38 Error setting auto stop precision.
EXP_CONSTRAINT_ERROR 39 Expression constraint error.
OPTIMIZATION_NOT_SET 40 Optimization has not been set.
OPTIMIZATION_COMPLETE 41 Optimization has completed.
OPTIMIZATION_STOP_FAILURE 42 Optimization stop failed.

Notes on Error Numbers and Messages:

1. The presence of any error text relating to a particular function or behavior does
not imply that the function is, or will be, available in SIMPROCESS when
operated as a service via the DispatcherService and Dispatcher applications.

2. Some error numbers represent special conditions which are theoretically possible
but have not actually been encountered during testing.

3. Though some error messages make reference to detail information and others do
not, this additional information should be checked following most operations to
ensure both completeness and accuracy.

Appendix B

SimulationStatus Source Listing

package com.simprocess.service;

public class SimulationStatus {

private String errorMessage = null;
private String exceptionMessage = null;
private boolean error = false;
private boolean simulating = false;
private boolean simComplete = false;
private boolean initializing = false;
private boolean haltedEarly = false;

public SimulationStatus() {
}

public SimulationStatus(String errorMessage, String exceptionMessage,
 boolean error,
 boolean simulating,
 boolean simComplete,
 boolean initializing,
 boolean haltedEarly) {
 this.errorMessage = errorMessage;
 this.exceptionMessage = exceptionMessage;
 this.error = error;
 this.simulating = simulating;
 this.simComplete = simComplete;
 this.initializing = initializing;
 this.haltedEarly = haltedEarly;
}

public void setErrorMessage(String msg) {
 this.errorMessage = msg;
}

public String getErrorMessage() {
 return this.errorMessage;
}

public void setExceptionMessage(String msg) {
 this.exceptionMessage = msg;
}

public String getExceptionMessage() {
 return this.exceptionMessage;
}

public void setError(boolean flag) {
 this.error = flag;
}

public boolean isError() {
 return this.error;
}

public void setSimulating(boolean flag) {
 this.simulating = flag;
}

public boolean isSimulating() {
 return this.simulating;
}

public void setSimComplete(boolean flag) {
 this.simComplete = flag;
}

public boolean isSimComplete() {
 return this.simComplete;
}

public void setInitializing(boolean flag) {
 this.initializing = flag;
}

public boolean isInitializing() {
 return this.initializing;
}

public void setHaltedEarly(boolean flag) {
 this.haltedEarly = flag;
}

public boolean isHaltedEarly() {
 return this.haltedEarly;
}

}

	Introduction
	SIMPROCESS and Dispatcher Installation
	Licensing
	The License Server
	The license.dat File

	The RegistryServer Application
	
	Configuring RegistryServer
	Running RegistryServer
	Running RegistryServer as a Windows Service
	Running RegistryServer as a Server on Other Systems
	Shutting Down the RegistryServer Server

	Dispatcher
	
	Locating a RegistryServer
	Resetting or Appending Dispatcher Log Files
	Dispatcher Debugging
	Locating a License Server
	How Many Dispatchers?
	Application or Server?

	DispatcherService
	Installed DispatcherService Components
	Configuration Options
	Locating the RegistryServer
	Other Property Settings
	Changing Properties after Starting DispatcherService

	Deploying the DispatcherService
	DispatcherService Operations
	DispatcherService Usage Scenarios
	Available DispatcherService Operations

	Client Applications

